Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 1;304(5):F471-80.
doi: 10.1152/ajprenal.00560.2012. Epub 2013 Jan 2.

Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease

Affiliations
Free article

Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease

Eun-Sun Ryu et al. Am J Physiol Renal Physiol. .
Free article

Abstract

Recent experimental and clinical studies suggest a causal role of uric acid in the development of chronic kidney disease. Most studies have focused on uric acid-induced endothelial dysfunction, oxidative stress, and inflammation in the kidney. The direct effects of uric acid on tubular cells have not been studied in detail, and whether uric acid can mediate phenotypic transition of renal tubular cells such as epithelial-to-mesenchymal transition (EMT) is not known. We therefore investigated whether uric acid could alter E-cadherin expression and EMT in the kidney of hyperuricemic rats and in cultured renal tubular cells (NRK cells). Experimental hyperuricemia was associated with evidence of EMT before the development of significant tubulointerstitial fibrosis at 4 wk, as shown by decreased E-cadherin expression and an increased α-smooth muscle actin (α-SMA). Allopurinol significantly inhibited uric acid-induced changes in E-cadherin and α-SMA with an amelioration of renal fibrosis at 6 wk. In cultured NRK cells, uric acid induced EMT, which was blocked by the organic anion transport inhibitor probenecid. Uric acid increased expression of transcriptional factors associated with decreased synthesis of E-cadherin (Snail and Slug). Uric acid also increased the degradation of E-cadherin via ubiquitination, which is of importance since downregulation of E-cadherin is considered to be a triggering mechanism for EMT. In conclusion, uric acid induces EMT of renal tubular cells decreasing E-cadherin synthesis via an activation of Snail and Slug as well as increasing the degradation of E-cadherin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources