Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(12):e47406.
doi: 10.1371/journal.pone.0047406. Epub 2012 Dec 19.

CSF and brain structural imaging markers of the Alzheimer's pathological cascade

Affiliations

CSF and brain structural imaging markers of the Alzheimer's pathological cascade

Xianfeng Yang et al. PLoS One. 2012.

Abstract

Cerebral spinal fluid (CSF) and structural imaging markers are suggested as biomarkers amended to existing diagnostic criteria of mild cognitive impairment (MCI) and Alzheimer's disease (AD). But there is no clear instruction on which markers should be used at which stage of dementia. This study aimed to first investigate associations of the CSF markers as well as volumes and shapes of the hippocampus and lateral ventricles with MCI and AD at the baseline and secondly apply these baseline markers to predict MCI conversion in a two-year time using the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our results suggested that the CSF markers, including Aβ42, t-tau, and p-tau, distinguished MCI or AD from NC, while the Aβ42 CSF marker contributed to the differentiation between MCI and AD. The hippocampal shapes performed better than the hippocampal volumes in classifying NC and MCI, NC and AD, as well as MCI and AD. Interestingly, the ventricular volumes were better than the ventricular shapes to distinguish MCI or AD from NC, while the ventricular shapes showed better accuracy than the ventricular volumes in classifying MCI and AD. As the CSF markers and the structural markers are complementary, the combination of them showed great improvements in the classification accuracies of MCI and AD. Moreover, the combination of these markers showed high sensitivity but low specificity for predicting conversion from MCI to AD in two years. Hence, it is feasible to employ a cross-sectional sample to investigate dynamic associations of the CSF and imaging markers with MCI and AD and to predict future MCI conversion. In particular, the volumetric information may be good for the early stage of AD, while morphological shapes should be considered as markers in the prediction of MCI conversion to AD together with the CSF markers.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schematic of MRI data processing.
Figure 2
Figure 2. Hippocampal shape differences among normal controls (NC), mild cognitive impairment (MCI), and Alzheimer's Disease (AD).
Panels (a,b) respectively show group differences in the left and right hippocampal surface deformations between MCI and NC. Panels (c,d) respectively show group differences in the left and right hippocampal surface deformations between AD and MCI. Warm color denotes regions where structures have surface outward-deformation in the former group when compared with the latter group, while cool color denotes regions where structures have surface inward-deformation in the former group when compared with the latter group.
Figure 3
Figure 3. Shape differences of the lateral ventricles among normal controls (NC), mild cognitive impairment (MCI), and Alzheimer's Disease (AD).
Panels (a,b) respectively show group differences in the left and right lateral ventricular surface deformations between MCI and NC. Panels (c,d) respectively show group differences in the left and right lateral ventricular surface deformations between AD and MCI. Warm color denotes regions where structures have surface outward-deformation in the former group when compared with the latter group, while cool color denotes regions where structures have surface inward-deformation in the former group when compared with the latter group.

References

    1. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, et al. (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 257–262. - PMC - PubMed
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, et al. (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 263–269. - PMC - PubMed
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, et al. (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 270–279. - PMC - PubMed
    1. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, et al. (2011) Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 280–292. - PMC - PubMed
    1. Ferrarini L, Palm WM, Olofsen H, van der Landen R, van Buchem MA, et al. (2008) Ventricular shape biomarkers for Alzheimer's disease in clinical MR images. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 59: 260–267. - PubMed

Publication types

MeSH terms