Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May 1;50(9):2613-7.

Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice

Affiliations
  • PMID: 2328487

Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice

M A Morse et al. Cancer Res. .

Abstract

The effects of indole-3-carbinol (I3C) on lung neoplasia induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were assessed in an A/J mouse pulmonary adenoma bioassay. Mice were administered corn oil or I3C (25 or 125 mumol/mouse/day) by gavage for 4 consecutive days. Two h after the final pretreatment, mice were administered a single dose of NNK (10 mumol/mouse) i.p. Pulmonary adenomas were quantitated 16 wk after NNK dosing. Mice pretreated with corn oil developed 10.7 tumors/mouse; I3C pretreatment at either dose level inhibited tumor multiplicity by approximately 40%. The effects of I3C on NNK-induced DNA methylation in the lungs and livers of A/J mice were assessed using the same dosing regimen as in the bioassay. Both dose levels of I3C inhibited pulmonary O6-methylguanine formation by at least 50%, but enhanced hepatic DNA methylation at 2 or at 6 h after NNK administration. The effects of I3C pretreatment on NNK metabolism were also investigated. Hepatic microsomes of I3C-pretreated mice showed increased formation of alpha-hydroxylation products, while no significant effect of I3C pretreatment was observed in pulmonary microsomes. The effects of I3C on [5-3H]NNK disposition were also evaluated. I3C pretreatment produced lower levels of total radioactivity in the lung when compared with controls. Additionally, lower proportions of NNK and its carcinogenic metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were found in the lungs of I3C-pretreated mice. These results demonstrate that I3C inhibits NNK-induced lung neoplasia in A/J mice and suggest that the basis of this inhibition is the decrease in O6-methylguanine formation in A/J lung caused by I3C pretreatment. This decrease in lung DNA methylation appears to be due to the decreased bioavailability of NNK and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in the lungs of I3C-treated mice which, in turn, may be a result of increased metabolic alpha-hydroxylation of NNK by the liver.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources