Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;15(Pt 3):369-76.
doi: 10.1007/978-3-642-33454-2_46.

Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR

Affiliations

Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR

Darko Zikic et al. Med Image Comput Comput Assist Interv. 2012.

Abstract

We present a method for automatic segmentation of high-grade gliomas and their subregions from multi-channel MR images. Besides segmenting the gross tumor, we also differentiate between active cells, necrotic core, and edema. Our discriminative approach is based on decision forests using context-aware spatial features, and integrates a generative model of tissue appearance, by using the probabilities obtained by tissue-specific Gaussian mixture models as additional input for the forest. Our method classifies the individual tissue types simultaneously, which has the potential to simplify the classification task. The approach is computationally efficient and of low model complexity. The validation is performed on a labeled database of 40 multi-channel MR images, including DTI. We assess the effects of using DTI, and varying the amount of training data. Our segmentation results are highly accurate, and compare favorably to the state of the art.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources