Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;139(1):89-99.
doi: 10.1016/0012-1606(90)90281-m.

Role of protein kinase C in chick embryo skeletal myoblast fusion

Affiliations

Role of protein kinase C in chick embryo skeletal myoblast fusion

J D David et al. Dev Biol. 1990 May.

Abstract

The involvement of Ca2+ and PGE1 in myoblast fusion has been well documented. Extracellular Ca2+ is essential for myoblast adhesion, alignment, and fusion. There is an obligatory increase in Ca2+ influx immediately preceding fusion and the Ca2+ ionophore A23187 promotes precocious fusion. PGE1 receptors appear just prior to fusion, and an antagonist of PGE1 binding to cell surface receptors blocks fusion when added prior to Ca2+ influx. Finally, exogenous PGE1 induces precocious fusion. The present study was an initial test of the hypothesis that membrane protein phosphorylation by protein kinase C (PKC) links PGE1 receptor occupancy and the increase in Ca2+ influx. Our conclusion that PKC is an essential component in the regulation of myoblast fusion is based in part on the following evidence: (1) an activator of PKC, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), at low concentration and for a brief exposure period, induces precocious fusion and stimulates Ca2+ influx; (2) 4 alpha-phorbol-12,13-didecanoate, an inactive analog of TPA, has no discernible effect on fusion or Ca2+ influx; (3) 1-oleoyl-2-acetyl glycerol, an analog of endogenous diacylglycerol (DAG) which activates PKC, promotes precocious fusion, as does the DAG kinase inhibitor R59022 (6-[2-[4-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl]ethyl]-7- methyl-5H-thiazole-[3,2 alpha]-pyrimidin-5-one) which raises the level of endogenous DAG by inhibiting its catabolism; (4) 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), a highly potent PKC inhibitor, reversibly blocks myogenesis at a point between alignment and fusion; and (5) H-7 also blocks the normal increase in Ca2+ influx preceding fusion.

PubMed Disclaimer

Publication types

LinkOut - more resources