Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978 Jan 2;82(1):25-31.
doi: 10.1111/j.1432-1033.1978.tb11993.x.

The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues

Free article
Comparative Study

The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues

M Crompton et al. Eur J Biochem. .
Free article

Abstract

Addition of ruthenium red to mitochondria isolated from brain, adrenal cortex, parotid gland and skeletal muscle inhibits further uptake of Ca2+ by these mitochondria but induces little or no net Ca2+ efflux; the further addition of Na+, however, induces rapid efflux of Ca2+. The velocity of the Na+-induced efflux of Ca2+ from these mitochondria exhibits a sigmoidal dependence on the [Na+]. Addition of Na+ to mitochondria exhibiting the most active Na+-dependent efflux of Ca2+ (brain and adrenal cortex) also releases Ca2+ in the absence of ruthenium red and, under these conditions, the mitochondria become uncoupled. It is concluded that the efflux of Ca2+ from these mitochondria occurs via a Na+-dependent pathway, possibly a Na+-Ca2+ antiporter, that is distinct from the ruthenium-red-sensitive carrier that catalyses energy-linked Ca2+-influx. The possible role of the Na+-dependent efflux process in the distribution of Ca2+ between the mitochondria and the cytosol is discussed. In contrast, mitochondria from liver, kidney, lung, uterus muscle and ileum muscle exhibit no Na+-dependent efflux of Ca2+.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources