Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar:104:512-8.
doi: 10.1016/j.saa.2012.09.069. Epub 2012 Oct 2.

Structural, EPR, optical and magnetic properties of α-Fe₂O₃ nanoparticles

Affiliations

Structural, EPR, optical and magnetic properties of α-Fe₂O₃ nanoparticles

A A Jahagirdar et al. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Mar.

Abstract

α-Fe(2)O(3) nanoparticles were synthesized by a low temperature solution combustion method. The structural, magnetic and luminescence properties were studied. Powder X-ray diffraction (PXRD) pattern of α-Fe(2)O(3) exhibits pure rhombohedral structure. SEM micrographs reveal the dumbbell shaped particles. The EPR spectrum shows an intense resonance signal at g≈5.61 corresponding to isolated Fe(3+) ions situated in axially distorted sites, whereas the g≈2.30 is due to Fe(3+) ions coupled by exchange interaction. Raman studies show A(1g) (225 cm(-1)) and E(g) (293 and 409 cm(-1)) phonon modes. The absorption at 300 nm results from the ligand to metal charge transfer transitions whereas the 540 nm peak is mainly due to the (6)A(1)+(6)A(1)→(4)T(1)(4 G)+(4)T(1)(4 G) excitation of an Fe(3+)-Fe(3+) pair. A prominent TL glow peak was observed at 140°C at heating rate of 5 °Cs(-1). The trapping parameters namely activation energy (E), frequency factor (s) and order of kinetics (b) were evaluated and discussed.

PubMed Disclaimer

Publication types