Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2013 Jan-Feb;34(1):e48-52.
doi: 10.1097/BCR.0b013e3182700675.

A feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury

Affiliations
Randomized Controlled Trial

A feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury

Andrea Santos Portilla et al. J Burn Care Res. 2013 Jan-Feb.

Abstract

The aim of this article is to evaluate the neuroplastic changes associated with chronic neuropathic pain following burn injury and modulation feasibility using transcranial direct current stimulation (tDCS). This is a crossover, double-blinded case series involving three patients with chronic neuropathic pain following burn injury. Participants were randomly assigned to undergo single sessions of both sham and active anodal tDCS over the primary motor cortex, contralateral to the most painful site. Excitability of the motor cortex was assessed before and after each stimulation session with the use of transcranial magnetic stimulation. An overall decrease in cortical excitability was seen after active tDCS only, as characterized by a decrease in intracortical facilitation and amplitude of motor evoked potentials and an increase in intracortical inhibition. Clinical outcomes did not change after a single session of tDCS. Results are consistent with previous studies showing that patients with chronic neuropathic pain have defective intracortical inhibition. This case series shows early evidence that chronic pain following burn injury may share similar central neural mechanisms, which could be modulated using tDCS.

PubMed Disclaimer

Publication types