Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 23;5(2):262-7.
doi: 10.1021/am301920r. Epub 2013 Jan 7.

Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes

Affiliations

Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes

Veidhes R Basrur et al. ACS Appl Mater Interfaces. .

Abstract

Lithium-ion batteries have emerged as the preferred type of rechargeable batteries, but there is a need to improve the performance of the electrolytes therein. Specifically, the challenge is to obtain electrolytes with the mechanical rigidity of solids but with liquid-like conductivities. In this study, we report a class of nanostructured gels that are able to offer this unique combination of properties. The gels are prepared by utilizing the synergistic interactions between a molecular gelator, 1,3:2,4-di-O-methyl-benzylidene-d-sorbitol (MDBS), and a nanoscale particulate material, fumed silica (FS). When MDBS and FS are combined in a liquid consisting of propylene carbonate with dissolved lithium perchlorate salt, the liquid electrolyte is converted into a free-standing gel due to the formation of a strong MDBS-FS network. The gels exhibit elastic shear moduli around 1000 kPa and yield stresses around 11 kPa-both values considerably exceed those obtainable by MDBS or FS alone in the same liquid. At the same time, the gel also exhibits electrochemical properties comparable to the parent liquid, including a high ionic conductivity (~5 × 10(-3) S/cm at room temperature) and a wide electrochemical stability window (up to 4.5 V).

PubMed Disclaimer

Publication types

LinkOut - more resources