Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 1;288(9):6617-28.
doi: 10.1074/jbc.M112.448209. Epub 2013 Jan 8.

Ubiquitination by the membrane-associated RING-CH-8 (MARCH-8) ligase controls steady-state cell surface expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 1

Affiliations

Ubiquitination by the membrane-associated RING-CH-8 (MARCH-8) ligase controls steady-state cell surface expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 1

Bert van de Kooij et al. J Biol Chem. .

Abstract

The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1.

PubMed Disclaimer

Figures

FIGURE 1.
FIGURE 1.
MARCH proteins preferentially down-regulate TRAIL-R1 cell surface levels in MCF-7Casp-3 cells. A, MCF-7Casp-3 breast cancer cells were transfected to express WT or K44A dynamin together with GFP. To detect endogenous TRAIL-R1 or TRAIL-R2 at the cell surface, the cells were stained with specific antibodies and a second step reagent, or with second step reagent only (Control) followed by flow cytometric analysis. Histograms of TRAIL-R fluorescence intensity (FI) in the GFP positive populations are shown. B and C, MCF-7Casp-3 cells were transfected to express GFP-tagged MARCH-1, -2, -4, -8, -9, or GFP only (Control) and cell surface levels of TRAIL-R1 (left) and TRAIL-R2 (right) were determined by flow cytometry. Representative histograms of TRAIL-R intensity in the GFP positive populations are shown in B. Panel C shows the quantification of TRAIL-R1 and -R2 expression in MCF-7Casp-3 cells expressing the indicated MARCH-GFP proteins or GFP only (−). The MFI, denoting TRAIL-R cell surface levels in GFP+ cells expressing MARCH-GFP or GFP only is expressed as percentage of the MFI in untransfected GFP cells in the same cell population. Data represent mean ± S.D. of values from at least 3 independent experiments. Asterisks indicate statistically significant differences between MARCH-transfected and GFP-transfected control cells (one-way analysis of variance, Bonferroni correction; *, p < 0.05; **, p < 0.01; ***, p < 0.001). D, this experiment was performed and quantified as outlined in B and C, but in this case using the melanoma cell line Mel JuSo. Data represent mean ± S.D. of values from 2 independent experiments.
FIGURE 2.
FIGURE 2.
MARCH-8 requires a functional RING domain to down-regulate TRAIL-R1 cell surface expression. MCF-7Casp-3 cells were transfected to express GFP only (−), or GFP-tagged WT MARCH-8, or a MARCH-8 variant carrying ligase-inactivating mutations in its RING domain (MARCH-8 RING). Cell surface levels of TRAIL-R1 were determined by antibody staining, followed by flow cytometric analysis. A, schematic depiction of MARCH-8, on a relative scale, with indication of the RING-CH domain and transmembrane (TM) segments, as well as the three point mutations. B, primary data from a representative experiment, showing histograms of TRAIL-R1 cell surface expression (fluorescence intensity, FI) in GFP+ (MARCH-transfected) cells. C, TRAIL-R1 cell surface expression was quantified and statistically analyzed as described in the legend to Fig. 1C. Data represent mean ± S.D. of values from 3 independent experiments. Asterisk indicates statistically significant differences between cells with WT MARCH-8 versus control or the RING mutant (one-way analysis of variance, Bonferroni correction; *, p < 0.05).
FIGURE 3.
FIGURE 3.
MARCH overexpression inhibits apoptosis induction by TRAIL. A, MCF-7Casp-3 cells were transfected to express either GFP only, or GFP-tagged MARCH-1, or -8. At 24 h after transfection, cells were stimulated with IZ-TRAIL for 5 h and caspase-3 cleavage was determined by flow cytometry in the GFP positive cell populations. B, as in A, with the following adaptations. Cells were transfected with WT MARCH-1 or -8, or with the MARCH-8 RING mutant described in the legend to Fig. 2. Cells were stimulated with TRAIL for 14 h, and cell death was read out by propidium iodide (PI) uptake. Data in A and B represent mean ± S.D. of values from 3 to 4 independent experiments. The percentage of cells with cleaved caspase-3 or PI uptake in the untreated control samples was subtracted. Asterisks indicate statistically significant differences between MARCH.GFP-transfected and GFP only-transfected control cells at the indicated concentration of TRAIL (Student's t test; *, p < 0.05; **, p < 0.01; ***, p < 0.001).
FIGURE 4.
FIGURE 4.
Steady-state ubiquitination of TRAIL-R1 on lysine residue 273 by an endogenous machinery. A, MCF-7Casp-3 cells were transfected to express FLAG-ubiquitin, together with mRFP only (−), or with mRFP-chimeras of WT TRAIL-R1 (WT) or its K273A lysine mutant (K/A). MARCH-8.HA cDNA (+) or an empty control vector (−) were additionally transfected as indicated. Cells were lysed in Nonidet P-40 buffer, TRAIL-R1 was isolated with anti(α)-mRFP antibody and immunoprecipitates (IP) were analyzed by immunoblotting (IB) with α-mRFP antibody to detect TRAIL-R1, α-FLAG antibody to detect ubiquitin and α-HA antibody to detect MARCH-8. Asterisk denotes the heavy chain of the antibody used for IP. Solid and open arrowheads indicate, respectively, TRAIL-R1.mRFP and mRFP only. Blot is representative of 4 independent experiments. B, MCF-7Casp-3 cells were transfected to express FLAG-ubiquitin, together with either mRFP only (−), with mRFP chimeras of WT TRAIL-R1 (WT) or the K273A TRAIL-R1 mutant (K/A), or with a truncated TRAIL-R1 lacking the C-terminal 116 residues (ΔWT). TRAIL-R1 was isolated with α-mRFP antibody and immunoprecipitates were analyzed by immunoblotting with α-mRFP antibody to detect TRAIL-R1 and with α-FLAG antibody to detect ubiquitin. Data shown are representative of two independent experiments. C, MCF-7Casp-3 cells were transfected to express FLAG-ubiquitin, together with mRFP only (−), or with mRFP-chimeras of WT TRAIL-R1 (WT) or its K273A lysine mutant (K/A). Cells were lysed by boiling in SDS, Nonidet P-40 buffer was added in excess and immunoprecipitation of TRAIL-R1 and analysis were performed as outlined for panel A. Asterisk denotes the heavy chain of the antibody used for IP. Solid and open arrowheads indicate, respectively, TRAIL-R1.mRFP and mRFP only. The blot is representative of 2 independent experiments. D, alignment of primary amino acid sequence of part of the transmembrane segment (italic) and the remaining 14 residues of the cytoplasmic tail of the truncated TRAIL-R1 mutants used in E. Relevant potential ubiquitination sites are shown in bold. E, MCF-7Casp-3 cells were transfected to express FLAG-ubiquitin, together with mRFP-tagged TRAIL-R1 WT or mutants shown in D. TRAIL-R1 was isolated with α-mRFP antibody and immunoprecipitates were analyzed by immunoblotting with α-mRFP antibody to detect TRAIL-R1 and α-FLAG antibody to detect ubiquitin. The blot is representative of 2 independent experiments. Asterisk denotes the heavy chain of the antibody used for IP.
FIGURE 5.
FIGURE 5.
MARCH-1 and -8 interact with and down-regulate wild-type TRAIL-R1, but not the TRAIL-R1 K273A mutant. A, MCF-7Casp-3 cells were transfected to express mRFP only (−), mRFP-tagged WT TRAIL-R1 or K273A (K/A) mutant, together with HA-tagged MARCH-1, MARCH-8, or empty vector (−), as indicated. Immunoprecipitation was performed with α-mRFP antibody and immunoprecipitates (IP) were analyzed by immunoblotting with α-mRFP and α-HA antibodies to detect TRAIL-R1 and MARCH-1/8, respectively. Panel I, mRFP detection in IP of TRAIL-R1.mRFP and control mRFP; panel II, MARCH-1 and -8 detection in IP of TRAIL-R1.mRFP and control mRFP; panel III, mRFP detection (TRAIL-R1.mRFP or RFP only) in total cell lysates (TCL); panel IV, MARCH-1 and -8 detection in TCL. B, quantification of TRAIL-R1 down-regulation in total cell lysates. Total protein levels of WT TRAIL-R1 and the K/A mutant in TCL of control cells (−), or those expressing HA-tagged MARCH-1 or -8 were quantified from Western blots as depicted in panel III of A and plotted as percentage of the WT TRAIL-R1.mRFP expression in control cells. Data represent mean ± S.D. of values from the experiment depicted in A and 2 additional experiments. C, impact of MARCH-1 or MARCH-8 on WT and K/A mutant TRAIL-R1 cell surface expression. Cells stably expressing WT or K273A TRAIL-R1.mRFP were transfected to express GFP (−), GFP-tagged MARCH-1 or MARCH-8, and stained with antibody to TRAIL-R1 as outlined for Fig. 2. Quantification of 2–4 independent experiments assessing TRAIL-R1 MFI in GFP+ cells as the percentage of TRAIL-R1 MFI in GFP cells, whereby the values in control cells were set at 100%. Values represent mean ± S.D. Asterisks indicate statistically significant differences between TRAIL-R1 WT or K/A mutant (Student's t test; *, p < 0.05, **, p < 0.01).
FIGURE 6.
FIGURE 6.
MARCH-8 targets endogenous TRAIL-R1 for lysosomal degradation. A and B, H358 cells were treated with cycloheximide (CHX; 50 μg/ml) alone, or with CHX in combination with bafilomycin A1 (Baf A1; 200 nm) or MG132 (10 μm) for 16 h. Total cell lysates were analyzed by immunoblotting with α-TRAIL-R1 and α-actin antibodies. A, data of a representative experiment. B, mean ± S.D. of quantified values from 3 independent experiments. TRAIL-R1 intensity was corrected for actin expression, the control value was set to 100%. Asterisk indicates statistically significant difference (Student's t test; *, p < 0.05). C and D, MCF-7Casp-3 cells were transfected to express GFP only (−), or GFP-tagged MARCH-8. Cells were treated with BafA1 (100 nm) or left untreated for 16 h. Total cell lysates of GFP+ cells, obtained by flow cytometric sorting, were analyzed by immunoblotting with α-TRAIL-R1 and α-actin antibodies, and α-GFP antibody to detect MARCH-8. Solid and open arrowheads indicate, respectively, MARCH-8.GFP and GFP only. C, data of a representative experiment. D, mean ± S.D. of quantified values from 3 independent experiments. TRAIL-R1 intensity was corrected for actin expression, control value was set to 100%. Asterisk indicates a statistically significant difference (Student's t test; *, p < 0.05).
FIGURE 7.
FIGURE 7.
TRAIL-R1 is a substrate of endogenous MARCH-8. A, endogenous MARCH-8 expression in MCF-7Casp-3 (MCF-7) and Mel Juso (MJ) cells, as determined by RT-PCR on cDNA. Non-reverse transcribed RNA (RNA) was used as a control template to exclude amplification of genomic DNA. B, down-regulation of endogenous MARCH-8 by RNAi. MCF-7Casp-3 cells were transfected with MARCH-8 shRNA, together with GFP. MARCH-8 shRNA expressing cells (GFP+) and nonexpressing cells (GFP) cells were separated by flow cytometric sorting and analyzed for endogenous MARCH-8 transcript levels by quantitative RT-PCR. Signals that were corrected for GAPDH and MARCH-8 transcript levels in the GFP+ population were normalized to the levels in the GFP population. C, MCF-7Casp-3 cells were transfected to express mRFP alone, WT TRAIL-R1.mRFP, or K273A TRAIL-R1.mRFP, together with FLAG-ubiquitin and either an empty vector, or the MARCH-8 targeting shRNA. TRAIL-R1 was isolated by immunoprecipitation with α-mRFP antibody and immunoprecipitates (IP) were analyzed by immunoblotting for TRAIL-R1 (α-mRFP) or ubiquitin (α-FLAG). Solid and open arrowheads indicate, respectively, TRAIL-R1.mRFP and mRFP only. Data shown are representative of 3 independent experiments.
FIGURE 8.
FIGURE 8.
Endogenous MARCH-8 regulates cell surface expression of endogenous TRAIL-R1. A, MCF-7Casp-3 cells were transfected to express GFP (−), together with either a control vector (−), with MARCH-8 targeting shRNA (8), or with two different MARCH-1-targeting shRNAs (1b and 1c). Endogenous TRAIL-R1 cell surface expression was determined by flow cytometric analysis and data were evaluated as described in the legend to Fig. 2. Data represent mean values ± S.D. from 3 independent experiments. Asterisks indicate statistically significant differences compared with GFP-transfected control cells (one-way analysis of variance, Bonferroni correction; ***, p < 0.001). B, validation of the MARCH-8 rescue construct. MCF-7Casp-3 cells were transfected to express GFP-tagged MARCH-8 WT, or a MARCH-8 rescue (Rs) variant carrying silent mutations to allow escape from RNAi. Cells were cotransfected with empty vector (−) or MARCH-8 shRNA construct. MARCH-8.GFP expression was analyzed by immunoblotting for GFP in total cell lysates. C, MCF-7Casp-3 cells were transfected to express GFP (−), GFP-tagged MARCH-8 WT or Rs alone (−), or in conjunction MARCH-8 targeting shRNA (+). Endogenous TRAIL-R1 cell surface expression was determined by flow cytometric analysis and data were evaluated as described in the legend to Fig. 2. Data represent mean ± S.D. from at least 4 independent experiments. Asterisks indicate statistically significant differences compared with GFP-transfected control cells (one-way analysis of variance, Bonferroni correction; ***, p < 0.001).

Similar articles

Cited by

References

    1. Smyth M. J., Cretney E., Takeda K., Wiltrout R. H., Sedger L. M., Kayagaki N., Yagita H., Okumura K. (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon γ-dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 - PMC - PubMed
    1. Takeda K., Hayakawa Y., Smyth M. J., Kayagaki N., Yamaguchi N., Kakuta S., Iwakura Y., Yagita H., Okumura K. (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7, 94–100 - PubMed
    1. Grosse-Wilde A., Voloshanenko O., Bailey S. L., Longton G. M., Schaefer U., Csernok A. I., Schütz G., Greiner E. F., Kemp C. J., Walczak H. (2008) TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J. Clin. Invest. 118, 100–110 - PMC - PubMed
    1. Ashkenazi A., Herbst R. S. (2008) To kill a tumor cell. The potential of proapoptotic receptor agonists. J. Clin. Invest. 118, 1979–1990 - PMC - PubMed
    1. Kimberley F. C., Screaton G. R. (2004) Following a TRAIL. Update on a ligand and its five receptors. Cell Res. 14, 359–372 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources