Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;8(12):e1002820.
doi: 10.1371/journal.pcbi.1002820. Epub 2012 Dec 27.

Chapter 5: Network biology approach to complex diseases

Affiliations

Chapter 5: Network biology approach to complex diseases

Dong-Yeon Cho et al. PLoS Comput Biol. 2012.

Abstract

Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Identification of network modules enriched with genetic alterations.
(A) Genomic regions with alterations. (B) Genes in the altered regions are mapped to the interaction network and modules enriched with such genes are identified.
Figure 2
Figure 2. Finding differentially expressed modules.
(A) Score based method selects the module with significant expression changes. (B) Correlation based method selects edges with correlation changes. The red and blue edges are correlated and anti-correlated edges, respectively. (C) Set cover based method selects a set of genes covering all samples. In this example, each sample has at least 2 differentially expressed genes and the genes are connected in the network.
Figure 3
Figure 3. Finding information propagation modules.
(A) Shortest path approach to uncover information propagation. The shortest paths from a target gene (with hexagon shape) to each of three candidate genes are shown. The closest gene is identified as the most probable disease causing gene. (B) Flow based approach. The gene receiving the most significant amount of flow is identified as the disease gene. The information flow methods often follow Kirchhoff's current law (the amount of incoming information equals the amount of outgoing information).
Figure 4
Figure 4. A hypothetical interaction network to be used with Exercises 5 and 6.

References

    1. Veenstra-Vanderweele J, Christian SL, Cook EH Jr (2004) Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet 5: 379–405. - PubMed
    1. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, et al. (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466: 368–372. - PMC - PubMed
    1. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461: 218–223. - PubMed
    1. Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36: 1398–1403. - PMC - PubMed
    1. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118: 4947–4957. - PubMed

Publication types