Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr;27(4):1721-32.
doi: 10.1096/fj.12-210898. Epub 2013 Jan 9.

Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity

Affiliations

Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity

Claudia P Coomans et al. FASEB J. 2013 Apr.

Abstract

Circadian rhythm disturbances are observed in, e.g., aging and neurodegenerative diseases and are associated with an increased incidence of obesity and diabetes. We subjected male C57Bl/6J mice to constant light [12-h light-light (LL) cycle] to examine the effects of a disturbed circadian rhythm on energy metabolism and insulin sensitivity. In vivo electrophysiological recordings in the central pacemaker of the suprachiasmatic nuclei (SCN) revealed an immediate reduction in rhythm amplitude, stabilizing at 44% of normal amplitude values after 4 d LL. Food intake was increased (+26%) and energy expenditure decreased (-13%), and we observed immediate body weight gain (d 4: +2.4%, d 14: +5.0%). Mixed model analysis revealed that weight gain developed more rapidly in response to LL as compared to high fat. After 4 wk in LL, the circadian pattern in feeding and energy expenditure was completely lost, despite continuing low-amplitude rhythms in the SCN and in behavior, whereas weight gain had stabilized. Hyperinsulinemic-euglycemic clamp analysis revealed complete abolishment of normal circadian variation in insulin sensitivity in LL. In conclusion, a reduction in amplitude of the SCN, to values previously observed in aged mice, is sufficient to induce a complete loss of circadian rhythms in energy metabolism and insulin sensitivity.

PubMed Disclaimer

Publication types