A comparative study of current Clinical Natural Language Processing systems on handling abbreviations in discharge summaries
- PMID: 23304375
- PMCID: PMC3540461
A comparative study of current Clinical Natural Language Processing systems on handling abbreviations in discharge summaries
Abstract
Clinical Natural Language Processing (NLP) systems extract clinical information from narrative clinical texts in many settings. Previous research mentions the challenges of handling abbreviations in clinical texts, but provides little insight into how well current NLP systems correctly recognize and interpret abbreviations. In this paper, we compared performance of three existing clinical NLP systems in handling abbreviations: MetaMap, MedLEE, and cTAKES. The evaluation used an expert-annotated gold standard set of clinical documents (derived from from 32 de-identified patient discharge summaries) containing 1,112 abbreviations. The existing NLP systems achieved suboptimal performance in abbreviation identification, with F-scores ranging from 0.165 to 0.601. MedLEE achieved the best F-score of 0.601 for all abbreviations and 0.705 for clinically relevant abbreviations. This study suggested that accurate identification of clinical abbreviations is a challenging task and that more advanced abbreviation recognition modules might improve existing clinical NLP systems.
Figures
Similar articles
-
A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD).J Am Med Inform Assoc. 2017 Apr 1;24(e1):e79-e86. doi: 10.1093/jamia/ocw109. J Am Med Inform Assoc. 2017. PMID: 27539197 Free PMC article.
-
Detecting abbreviations in discharge summaries using machine learning methods.AMIA Annu Symp Proc. 2011;2011:1541-9. Epub 2011 Oct 22. AMIA Annu Symp Proc. 2011. PMID: 22195219 Free PMC article.
-
Ensembles of natural language processing systems for portable phenotyping solutions.J Biomed Inform. 2019 Dec;100:103318. doi: 10.1016/j.jbi.2019.103318. Epub 2019 Oct 23. J Biomed Inform. 2019. PMID: 31655273 Free PMC article.
-
From admission to discharge: a systematic review of clinical natural language processing along the patient journey.BMC Med Inform Decis Mak. 2024 Aug 29;24(1):238. doi: 10.1186/s12911-024-02641-w. BMC Med Inform Decis Mak. 2024. PMID: 39210370 Free PMC article.
-
Discerning tumor status from unstructured MRI reports--completeness of information in existing reports and utility of automated natural language processing.J Digit Imaging. 2010 Apr;23(2):119-32. doi: 10.1007/s10278-009-9215-7. Epub 2009 May 30. J Digit Imaging. 2010. PMID: 19484309 Free PMC article. Review.
Cited by
-
Drug knowledge discovery via multi-task learning and pre-trained models.BMC Med Inform Decis Mak. 2021 Nov 16;21(Suppl 9):251. doi: 10.1186/s12911-021-01614-7. BMC Med Inform Decis Mak. 2021. PMID: 34789238 Free PMC article.
-
Expanding a radiology lexicon using contextual patterns in radiology reports.J Am Med Inform Assoc. 2018 Jun 1;25(6):679-685. doi: 10.1093/jamia/ocx152. J Am Med Inform Assoc. 2018. PMID: 29329435 Free PMC article.
-
A deep database of medical abbreviations and acronyms for natural language processing.Sci Data. 2021 Jun 2;8(1):149. doi: 10.1038/s41597-021-00929-4. Sci Data. 2021. PMID: 34078918 Free PMC article.
-
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.J Am Med Inform Assoc. 2020 Jan 1;27(1):89-98. doi: 10.1093/jamia/ocz153. J Am Med Inform Assoc. 2020. PMID: 31710668 Free PMC article.
-
Making sense of abbreviations in nursing notes: A case study on mortality prediction.AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:275-284. eCollection 2019. AMIA Jt Summits Transl Sci Proc. 2019. PMID: 31258980 Free PMC article.
References
-
- Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008:128–144. - PubMed
-
- Meystre S, Haug PJ. Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. Journal of biomedical informatics. 2006 Dec;39(6):589–599. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources