Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 18;19(8):2866-73.
doi: 10.1002/chem.201202833. Epub 2013 Jan 10.

Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis

Affiliations

Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis

Xiaoxin Zou et al. Chemistry. .

Abstract

A novel dopant-free TiO(2) photocatalyst (V(o)(.)-TiO(2)), which is self-modified by a large number of paramagnetic (single-electron-trapped) oxygen vacancies, was prepared by calcining a mixture of a porous amorphous TiO(2) precursor, imidazole, and hydrochloric acid at elevated temperature (450 °C) in air. Control experiments demonstrate that the porous TiO(2) precursor, imidazole, and hydrochloric acid are all necessary for the formation of V(o)(.)-TiO(2). Although the synthesis of V(o)(.)-TiO(2) originates from such a multicomponent system, this synthetic approach is facile, controllable, and reproducible. X-ray diffraction, XPS, and EPR spectroscopy reveal that the V(o)(.)-TiO(2) material with a high crystallinity embodies a mass of paramagnetic oxygen vacancies, and is free of other dopant species such as nitrogen and carbon. UV/Vis diffuse-reflectance spectroscopy and photoelectrochemical measurement demonstrate that V(o)(.)-TiO(2) is a stable visible-light-responsive material with photogenerated charge separation efficiency higher than N-TiO(2) and P25 under visible-light irradiation. The V(o)(.)-TiO(2) material exhibits not only satisfactory thermal- and photostability, but also superior photocatalytic activity for H(2) evolution (115 μmol h(-1) g(-1)) from water with methanol as sacrificial reagent under visible light (λ>400 nm) irradiation. Furthermore, the effects of reaction temperature, ratio of starting materials (imidazole:TiO(2) precursor) and calcination time on the photocatalytic activity and the microstructure of V(o)(.)-TiO(2) were elucidated.

PubMed Disclaimer

LinkOut - more resources