Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;45(3):782-91.
doi: 10.3758/s13428-012-0293-y.

CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers

Affiliations

CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers

Kirsten Bulteel et al. Behav Res Methods. 2013 Sep.

Abstract

Mixture analysis is commonly used for clustering objects on the basis of multivariate data. When the data contain a large number of variables, regular mixture analysis may become problematic, because a large number of parameters need to be estimated for each cluster. To tackle this problem, the mixtures-of-factor-analyzers (MFA) model was proposed, which combines clustering with exploratory factor analysis. MFA model selection is rather intricate, as both the number of clusters and the number of underlying factors have to be determined. To this end, the Akaike (AIC) and Bayesian (BIC) information criteria are often used. AIC and BIC try to identify a model that optimally balances model fit and model complexity. In this article, the CHull (Ceulemans & Kiers, 2006) method, which also balances model fit and complexity, is presented as an interesting alternative model selection strategy for MFA. In an extensive simulation study, the performances of AIC, BIC, and CHull were compared. AIC performs poorly and systematically selects overly complex models, whereas BIC performs slightly better than CHull when considering the best model only. However, when taking model selection uncertainty into account by looking at the first three models retained, CHull outperforms BIC. This especially holds in more complex, and thus more realistic, situations (e.g., more clusters, factors, noise in the data, and overlap among clusters).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources