Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;56(1):40-50.
doi: 10.1007/s11427-012-4426-4. Epub 2013 Jan 12.

Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells

Affiliations
Free article

Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells

MiaoYing Yu et al. Sci China Life Sci. 2013 Jan.
Free article

Abstract

Long-term in vitro maintenance of embryonic stem cell (ESC) pluripotency enables the pluripotency and differentiation of ESCs in animals to be investigated. The ability to successfully maintain and differentiate chicken embryonic stem cells (cESCs) would provide a useful tool for avian biology research and would be a resource directly applicable to agricultural production. In this study, endogenous chicken pluripotency transcription factors, POUV, Sox-2, Nanog and Lin28 were cloned and expressed as recombinant proteins containing a nine consecutive arginine protein transduction domain (PTD). cESCs were cultured with these recombinant proteins to maintain cESC pluripotency in vitro. Cultured cESCs exhibited typical characteristics of pluripotency, even after six generations of rapid doubling, including positive staining for stage-specific embryonic antigen I, and strong staining for alkaline phosphatase. Expression levels of the pluripotency markers, POUV, Nanog, C-Myc, Sox-2 and Lin28 were the same as in uncultured stage X blastoderm cells, and most significantly, the formation of embryoid bodies (EBs) by 6th generation cESCs confirmed the ability of these cultured cESCs to differentiate into cells of all three embryonic germ layers. Thus, transcription factors could be translocated through the cell membrane into the intracellular space of cESCs by using a PTD of nine consecutive arginines and the pluripotency of cESCs could be maintained in vitro for at least six generations.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources