Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population
- PMID: 23315665
- PMCID: PMC3563765
- DOI: 10.2967/jnumed.112.108969
Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population
Abstract
We compared the performance of fully automated quantification of attenuation-corrected (AC) and noncorrected (NC) myocardial perfusion SPECT (MPS) with the corresponding performance of experienced readers for detection of coronary artery disease (CAD).
Methods: Rest-stress (99m)Tc-sestamibi MPS studies (n = 995; 650 consecutive cases with coronary angiography and 345 with likelihood of CAD < 5%) were obtained by MPS with AC. The total perfusion deficit (TPD) for AC and NC data was compared with the visual summed stress and rest scores of 2 experienced readers. Visual reads were performed in 4 consecutive steps with the following information progressively revealed: NC data, AC + NC data, computer results, and all clinical information.
Results: The diagnostic accuracy of TPD for detection of CAD was similar to both readers (NC: 82% vs. 84%; AC: 86% vs. 85%-87%; P = not significant) with the exception of the second reader when clinical information was used (89%, P < 0.05). The receiver-operating-characteristic area under the curve (ROC AUC) for TPD was significantly better than visual reads for NC (0.91 vs. 0.87 and 0.89, P < 0.01) and AC (0.92 vs. 0.90, P < 0.01), and it was comparable to visual reads incorporating all clinical information. The per-vessel accuracy of TPD was superior to one reader for NC (81% vs. 77%, P < 0.05) and AC (83% vs. 78%, P < 0.05) and equivalent to the second reader (NC, 79%; and AC, 81%). The per-vessel ROC AUC for NC (0.83) and AC (0.84) for TPD was better than that for the first reader (0.78-0.80, P < 0.01) and comparable to that of the second reader (0.82-0.84, P = not significant) for all steps.
Conclusion: For detection of ≥70% stenoses based on angiographic criteria, a fully automated computer analysis of NC and AC MPS data is equivalent for per-patient and can be superior for per-vessel analysis, when compared with expert analysis.
Figures
Comment in
-
[Evidence of coronary heart disease: automatic or manual?].Rofo. 2013 Sep;184(10):924. doi: 10.1055/s-0032-1319761. Rofo. 2013. PMID: 24218683 German. No abstract available.
-
[Evidence of coronary heart disease: automatic or manual?].Rofo. 2013 Oct;185(10):924. Rofo. 2013. PMID: 24490244 German. No abstract available.
References
-
- Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging. 2008;1:156–163. - PubMed
-
- Berman DS, Kang X, Van Train KF, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1998;32:1987–1995. - PubMed
-
- Leslie WD, Tully SA, Yogendran MS, et al. Prognostic value of automated quantification of 99mTc-sestamibi myocardial perfusion imaging. J Nucl Med. 2005;46:204–211. - PubMed
-
- Tamaki N, Yonekura Y, Mukai T, et al. Stress thallium-201 transaxial emission computed tomography: quantitative versus qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol. 1984;4:1213–1221. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous