Stereoselective inhibition of muscarinic receptor subtypes by the enantiomers of hexahydro-difenidol and acetylenic analogues
- PMID: 2331578
- PMCID: PMC1917332
- DOI: 10.1111/j.1476-5381.1990.tb12949.x
Stereoselective inhibition of muscarinic receptor subtypes by the enantiomers of hexahydro-difenidol and acetylenic analogues
Abstract
1. The affinities of the (R)- and (S)-enantiomers of hexahydro-difenidol (1) and its acetylenic analogues hexbutinol (2), hexbutinol methiodide (3) and p-fluoro-hexbutinol (4) (stereochemical purity greater than 99.8%) for muscarinic receptors in rabbit vas deferens (M1), guinea-pig atria (M2) and guinea-pig ileum (M3) were measured by dose-ratio experiments. 2. The (R)-enantiomers consistently showed higher affinities than the (S)-isomers. The stereoselectivity ratios [(R)/(S)] were greatest with the enantiomers of 1 (vas deferens: 550; ileum: 191; atria: 17) and least with those of the p-Fluoro-analogue 4 (vas deferens: 34; ileum: 8.5; atria: 1.7). 3. The enantiomeric potency ratios for compounds 1-4 were highest in rabbit vas deferens, intermediate in guinea-pig ileum and much less in guinea-pig atria. Thus, these ratios may serve as a predictor of muscarinic receptor subtype identity. 4. (S)-p-Fluoro-hexbutinol [(S)-4] showed a novel receptor selectivity profile with preference for M3 receptors: M3 greater than M2 greater than or equal to M1. 5. These results do not conform to Pfeiffer's rule that activity differences between enantiomers are greater with more potent compounds.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources