Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May:135:51-9.
doi: 10.1016/j.jsbmb.2012.12.017. Epub 2013 Jan 11.

Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: aromatase inhibition and autophagy

Affiliations

Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: aromatase inhibition and autophagy

Cristina Amaral et al. J Steroid Biochem Mol Biol. 2013 May.

Abstract

Several therapeutic approaches are used in estrogen receptor positive (ER(+)) breast cancers, being one of them the use of aromatase inhibitors (AIs). Although AIs demonstrate higher efficacy than tamoxifen, they can also exhibit de novo or acquired resistance after prolonged treatment. Recently, we have described the synthesis and biochemical evaluation of four steroidal AIs, 3β-hydroxyandrost-4-en-17-one (1), androst-4-en-17-one (12), 4α,5α-epoxyandrostan-17-one (13a) and 5α-androst-2-en-17-one (16), obtained from modifications in the A-ring of the aromatase substrate, androstenedione. In this study, it was investigated the biological effects of these AIs in different breast cancer cell lines, an ER(+) aromatase-overexpressing human breast cancer cell line (MCF-7aro cells), an estrogen-receptor negative (ER(-)) human breast cancer cell line (SK-BR-3 cells), and a late stage of acquired resistance cell line (LTEDaro cells). The effects of an autophagic inhibitor (3-methyladenine) plus AIs 1, 12, 13a or exemestane in LTEDaro cells were also studied to understand the involvement of autophagy in AI acquired resistance. Our results showed that these steroids inhibit aromatase of MCF-7aro cells and decrease cell viability in a dose- and time-dependent manner. The new AI 1 is the most potent inhibitor, although the AI 12 demonstrates to be the most effective in decreasing cell viability. Besides, and in advantage over exemestane, AIs 12 and 13a also reduced LTEDaro cells viability. The use of the autophagic inhibitor allowed AIs to diminish viability of LTEDaro cells, presenting a similar behavior to the sensitive cells. Thus, inhibition of autophagy may sensitize hormone-resistant cancer cells to anti-estrogen therapies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms