Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;50(4):330-45.
doi: 10.5114/fn.2012.32363.

Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal lipidosis

Affiliations
Free article

Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal lipidosis

Harvey Sarnat et al. Folia Neuropathol. 2012.
Free article

Abstract

Background: Hemimegalencephaly (HME) is a hamartomatous malformation of one cerebral hemisphere. As this is a disorder of cellular growth and lineage, we sought evidence of an early ontogenetic disturbance of microtubular assembly or function.

Material and methods: Three male infants with HME had brain resections for refractory epilepsy. One died postoperatively at 2.5 months and an autopsy was performed. Two were isolated cases and one has Proteus syndrome. The phosphorylated form of the microtubule-associated protein tau was studied, transmission electron microscopy (EM) was performed, and activation of the mTOR pathway was defined.

Results: The hippocampus and neocortex of HME exhibited cytoarchitectural abnormalities and intense tau immunoreactivity. The post-mortem non-HME hemisphere exhibited sparse dysmorphic tau-reactive cortical neurones, intense only in the cingulate gyrus, a few isolated dysmorphic white matter neurons and none in subcortical structures. Numerous enlarged and dysmorphic cells exhibited P-4E-BP1 and phosphoribosomal P-S6 immunoreactivity, indicating mTOR activation. Control brains were negative for tau expression and mTOR activation. EM in each case showed abundant lipid in neurones and astrocytic end-feet on capillaries, and well-preserved mitochondria; oil red O in frozen sections and semi-thin sections also showed lipid storage by light microscopy.

Conclusions: Because HME tissue exhibited enhanced levels of phosphorylated tau protein and evidence of mTOR hyperactivation, we propose that the pathogenesis of HME may involve an early defect in microtubules, likely related to the AKT3 gene. Lipidosis of neurones and glia suggests metabolic impairment of yet undetermined type and relation to tauopathy in HME. Perinatal treatment of HME with everolimus theoretically is plausible.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources