Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov-Dec;46(6):569-78.
doi: 10.5114/ninp.2012.31607.

Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders

Affiliations
Review

Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders

Irena Baranowska-Bosiacka et al. Neurol Neurochir Pol. 2012 Nov-Dec.

Abstract

Lead (Pb) toxicity is still a major health problem associated with both environmental and occupational exposure. Special attention is given to the neurotoxic effect of lead. Along with the newly emerging data, the Pb concentration in the body that can be considered safe is declining. Numerous studies on the neurotoxicity of Pb have shown multiple cellular 'molecular targets' of this metal at the biochemical and molecular levels, and differences in sensitivity to its toxic action among various neural cells. One possible target of the neurotoxic effect of Pb (at the synapse level) is N-methyl-D-aspartic acid (NMDA) receptors. This review presents the hypothetical molecular mechanism by which Pb disrupts synapse formation and plasticity in developing hippocampal neurons and the role of the NMDA receptor-dependent signaling pathway and brain-derived neurotrophic factor (BDNF) as a mechanism of Pb neurotoxicity at the synapse level.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances