Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr;43(4):897-906.
doi: 10.1002/eji.201242983. Epub 2013 Feb 18.

Salmonella polarises peptide-MHC-II presentation towards an unconventional Type B CD4+ T-cell response

Affiliations
Free PMC article

Salmonella polarises peptide-MHC-II presentation towards an unconventional Type B CD4+ T-cell response

Nicola P Jackson et al. Eur J Immunol. 2013 Apr.
Free PMC article

Abstract

Distinct peptide-MHC-II complexes, recognised by Type A and B CD4(+) T-cell subsets, are generated when antigen is loaded in different intracellular compartments. Conventional Type A T cells recognize their peptide epitope regardless of the route of processing, whereas unconventional Type B T cells only recognise exogenously supplied peptide. Type B T cells are implicated in autoimmune conditions and may break tolerance by escaping negative selection. Here we show that Salmonella differentially influences presentation of antigen to Type A and B T cells. Infection of bone marrow-derived dendritic cells (BMDCs) with Salmonella enterica serovar Typhimurium (S. Typhimurium) reduced presentation of antigen to Type A T cells but enhanced presentation of exogenous peptide to Type B T cells. Exposure to S. Typhimurium was sufficient to enhance Type B T-cell activation. Salmonella Typhimurium infection reduced surface expression of MHC-II, by an invariant chain-independent trafficking mechanism, resulting in accumulation of MHC-II in multi-vesicular bodies. Reduced MHC-II surface expression in S. Typhimurium-infected BMDCs correlated with reduced antigen presentation to Type A T cells. Salmonella infection is implicated in reactive arthritis. Therefore, polarisation of antigen presentation towards a Type B response by Salmonella may be a predisposing factor in autoimmune conditions such as reactive arthritis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
MHC-II accumulates in MVBs in Salmonella-infected cells. MelJuSo were infected for 20 min with invasive GFP-S. Typhimurium (MOI 50). Cell surface MHC-II was labelled (L243) at 12 h post-infection and then cells were fixed (A) or further incubated until 20 h post-infection before fixation (B, C, E and F). Cell sections were processed for cryo-immunoelectron microscopy and HLA-DR localisation was visualised with Protein A-gold (10 nm). (D) Graph represents average amount of gold (HLA-DR)/MVB in each cell analysed. Average amount of gold/MVB was calculated for at least 15 cells per condition and comparison of distributions was assessed by unpaired two-tailed t-test. Boxed areas from (B) and (C) are magnified twofold in (E) and (F), respectively. Histograms show surface HLA-DR measured by flow cytometry in infected and uninfected MelJuSo at time points indicated. Refer to Supporting Information Fig. 1A for gating strategy. Data are representative of two independent experiments.
Figure 2
Figure 2
MHC-II down-regulation by Salmonella requires clathrin but not invariant chain-directed trafficking. (A) HeLa cells stably expressing HLA-DR WT (DRα,β) and cytoplasmic tail mutants were generated. HLA-DR surface expression was assessed by flow cytometry at 20 h post-infection with invasive GFP-S. Typhimurium and compared with HeLa-CIITA (Ii positive) cells. Refer to Supporting Information Fig. 1A and B for gating strategy and representative flow cytometry data. Graph shows percent of normal HLA-DR surface expression in uninfected (GFP-negative) cells combined from at least four independent experiments. (B) HeLa cells stably expressing HLA-DR WT (DRα,β)(Ii negative) were transfected with AP-2, clathrin or control siRNAs. Cells were infected with invasive GFP-S. Typhimurium after 5 days of AP-2 or clathrin depletion and surface HLA-DR was assessed as described in (A). Western blot shows AP-2 and clathrin depletion from representative cell lysates after 5 days of siRNA treatment. The loading control is β-actin. Graph shows percent of normal surface HLA-DR expression in uninfected (GFP negative) cells combined from four independent experiments. Comparison of distributions was performed by unpaired (A) or paired (B) two-tailed t-tests.
Figure 3
Figure 3
Salmonella downregulates I-A and I-E surface expression and presentation of antigen to CD4+ T cells. (A) BMDCs were infected with opsonised GFP-S. Typhimurium (MOI 10) then I-Ak (OX6) and I-Ek (14.4.4s) surface expression was compared in infected (GFP positive) and uninfected (GFP negative) CD11c/CD11b+ BMDCs by flow cytometry. Refer to Supporting Information Fig. 1A for gating strategy. Histograms (upper panels) show I-Ek surface expression in infected and uninfected BMDCs from a representative of at least four independent experiments. Graphs (lower panels) show percent of normal (GFP negative) I-Ak or I-Ek surface expression combined from four independent preparations of BMDCs infected with WT or SPI2-deficient (ΔssaV) S. Typhimurium. (B) BMDCs (in triplicate) were uninfected or infected with opsonised WT, HKWT or ΔssaV S. Typhimurium (MOI 10). From 20 h post-infection, cells were incubated with HEL protein and Type A CD4+ T hybridoma cells (3A9) at a ratio of 5 T cells: 1 BMDC. After 24 h, culture supernatants were harvested and T-cell activation was quantified by IL-2 ELISA. Graph shows percent of normal mean (uninfected) I-Ak-dependent HEL presentation to Type A T cells combined from at least four independent experiments. Antigen presentation in uninfected BMDCs is shown as a dashed line. Comparison of distributions was performed by paired two-tailed t-tests.
Figure 4
Figure 4
Salmonella infection enhances presentation of exogenous peptide to Type B T cells. BMDCs (in triplicate) were infected with opsonised WT (A and B), SPI2-deficient (ΔssaV) (B) or HKWT (B) GFP-S. Typhimurium (MOI 10). From 20 h post-infection, cells were incubated with HEL protein or HEL46–61 peptide and 3A9 (Type A) or 11A10 (Type B) T hybridoma cells at a ratio of 5 T cells: 1 BMDC. After 24 h, culture supernatants were harvested and T-cell activation was quantified by IL-2 ELISA. (A) Graphs show mean IL-2 concentration from a representative of at least four independent experiments. Error bars represent SD. (B) Graphs show percent of normal (uninfected) I-Ak-dependent HEL46–61 presentation to Type A or B T cells combined from at least three independent experiments. Antigen presentation in uninfected BMDCs is shown as a dashed line. Comparison of distributions was performed by paired two-tailed t-tests.
Figure 5
Figure 5
Exposure to Salmonella is sufficient to enhance presentation of exogenous peptide to Type B T cells. BMDCs (in triplicate) were infected with opsonised WT, SPI2-deficient (ΔssaV) or HKWT GFP-S. Typhimurium (MOI 10, unless specified (C)). For antigen presentation, BMDCs were incubated with HEL46–61 peptide and 11A10 (Type B) T hybridoma cells at a ratio of 5 T cells: 1 BMDC. After 24 h, culture supernatants were harvested and T-cell activation was quantified by IL-2 ELISA. (A) At 20 h post-infection, culture supernatant was harvested and incubated with fresh BMDCs, HEL46–61 peptide and 11A10 (Type B) T cells. Where indicated, culture supernatant was filtered (0.45 μm) prior to incubation with fresh BMDCs. (B) At 20 h post-infection, GFP-S. Typhimurium-infected BMDCs were sorted from the exposed but uninfected population. Refer to Supporting Information Fig. 1A for representative gating strategy. Presentation of 0.5 μM HEL46–61 peptide to 11A10 (Type B) T cells was compared for BMDCs that were unexposed, exposed but uninfected, or infected with S. Typhimurium. Comparison of distributions was performed by unpaired two-tailed t-tests. (A–C) Data shown are the mean + SD and are representative of one out of at least four independent experiments.

Similar articles

Cited by

References

    1. Brumell JH, Grinstein S. Salmonella redirects phagosomal maturation. Curr. Opin. Microbiol. 2004;7:78–84. - PubMed
    1. Broz P, Ohlson MB, Monack DM. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut. Microbes. 2012;3:62–70. - PMC - PubMed
    1. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001;2:361–367. - PubMed
    1. Kuhle V, Hensel M. Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell. Mol. Life Sci. 2004;61:2812–2826. - PMC - PubMed
    1. Dham SK, Thompson RA. Humoral and cell-mediated immune responses in chronic typhoid carriers. Clin. Exp. Immunol. 1982;50:34–40. - PMC - PubMed

Publication types

MeSH terms