Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;4(4):201-10.
Epub 2012 Dec 26.

Serotonergic modulation of Neural activities in the entorhinal cortex

Affiliations

Serotonergic modulation of Neural activities in the entorhinal cortex

Saobo Lei. Int J Physiol Pathophysiol Pharmacol. 2012.

Abstract

The entorhinal cortex (EC) is considered as the gate to control the flow of information into and out of the hippocampus. The EC is important for numerous physiological functions such as emotional control, learning and memory and pathological disorders including Alzheimer's disease, schizophrenia and temporal lobe epilepsy. Serotonin is a classical neurotransmitter which may modify these physiological functions and pathology of neurological diseases. The EC receives profuse serotonergic innervations from the raphe nuclei in the brainstem and expresses high density of serotonergic receptors including 5-HT(1A), 5-HT(1D), 5-HT(1E), 5-HT(2A), 5-HT(3) and 5-HT(6). The prominent innervation by serotonergic neurons and the dense expression of serotonergic receptors in the EC suggest that serotonin is a major modulator in this brain region. Serotonin exerts inhibitory effects in the EC. Serotonin hyperpolarizes entorhinal neurons and inhibits the excitatory synaptic transmission via activation of 5-HT(1A) receptors but facilitates GABA release via activation of 5-HT(2A) receptors. Both 5-HT(1A) and 5-HT(2A) receptors are required for serotonin-induced inhibition of epileptiform activity although 5-HT(3) receptors may be involved in serotonin-mediated inhibition of acetylcholine release in the EC. Furthermore, the functions of serotonin in the EC may be implicated in Parkinson's disease, Alzheimer's disease and depression. Thus, understanding the roles of serotonergic modulation in the EC is of major clinical importance. Here, I review recent findings concerning the effects of serotonin on neural circuitry activity in the EC.

Keywords: G-protein coupled receptor; GABA; Glutamate; epilepsy; neurotransmitter; synaptic transmission.

PubMed Disclaimer

Figures

Figure 1
Figure 1
5-HT depresses the firing frequency of action potentials recorded from a stellate neuron in layer II of the EC (unpublished data).
Figure 2
Figure 2
5-HT enhances the firing frequency of action potentials recorded from an interneuron in the EC (unpublished data).

Similar articles

Cited by

References

    1. Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol. 1989;33:161–253. - PubMed
    1. Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Lopes da Silva FH. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus. 2000;10:398–410. - PubMed
    1. Burwell RD. The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci. 2000;911:25–42. - PubMed
    1. Steward O, Scoville SA. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol. 1976;169:347–370. - PubMed
    1. Witter MP, Wouterlood FG, Naber PA, Van Haeften T. Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci. 2000;911:1–24. - PubMed

LinkOut - more resources