Utility of 1H NMR chemical shifts in determining RNA structure and dynamics
- PMID: 23320790
- PMCID: PMC3676946
- DOI: 10.1021/jp310863c
Utility of 1H NMR chemical shifts in determining RNA structure and dynamics
Abstract
The development of methods for predicting NMR chemical shifts with high accuracy and speed is increasingly allowing use of these abundant, readily accessible measurements in determining the structure and dynamics of proteins. For nucleic acids, however, despite the availability of semiempirical methods for predicting (1)H chemical shifts, their use in determining the structure and dynamics has not yet been examined. Here, we show that (1)H chemical shifts offer powerful restraints for RNA structure determination, allowing discrimination of native structure from non-native states to within 2-4 Å, and <3 Å when highly flexible residues are ignored. Theoretical simulations shows that although (1)H chemical shifts can provide valuable information for constructing RNA dynamic ensembles, large uncertainties in the chemical shift predictions and inherent degeneracies lead to higher uncertainties as compared to residual dipolar couplings.
Figures


Similar articles
-
Chemical shifts-based similarity restraints improve accuracy of RNA structures determined via NMR.RNA. 2020 Dec;26(12):2051-2061. doi: 10.1261/rna.074617.119. Epub 2020 Sep 11. RNA. 2020. PMID: 32917774 Free PMC article.
-
Maximizing accuracy of RNA structure in refinement against residual dipolar couplings.J Biomol NMR. 2019 Apr;73(3-4):117-139. doi: 10.1007/s10858-019-00236-6. Epub 2019 May 2. J Biomol NMR. 2019. PMID: 31049778
-
A method of determining RNA conformational ensembles using structure-based calculations of residual dipolar couplings.J Chem Phys. 2013 Jun 7;138(21):215103. doi: 10.1063/1.4804301. J Chem Phys. 2013. PMID: 23758399
-
Advances in the determination of nucleic acid conformational ensembles.Annu Rev Phys Chem. 2014;65:293-316. doi: 10.1146/annurev-physchem-040412-110059. Epub 2013 Dec 16. Annu Rev Phys Chem. 2014. PMID: 24364917 Free PMC article. Review.
-
Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.J Chem Inf Model. 2019 May 28;59(5):1743-1758. doi: 10.1021/acs.jcim.8b00928. Epub 2019 Mar 18. J Chem Inf Model. 2019. PMID: 30840442 Review.
Cited by
-
Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.Nucleic Acids Res. 2014 Dec 16;42(22):e173. doi: 10.1093/nar/gku1006. Epub 2014 Nov 17. Nucleic Acids Res. 2014. PMID: 25404135 Free PMC article.
-
Structural features of a 3' splice site in influenza a.Biochemistry. 2015 Jun 2;54(21):3269-85. doi: 10.1021/acs.biochem.5b00012. Epub 2015 May 21. Biochemistry. 2015. PMID: 25909229 Free PMC article.
-
Characterizing excited conformational states of RNA by NMR spectroscopy.Curr Opin Struct Biol. 2015 Feb;30:134-146. doi: 10.1016/j.sbi.2015.02.011. Epub 2015 Mar 10. Curr Opin Struct Biol. 2015. PMID: 25765780 Free PMC article. Review.
-
Characterizing RNA ensembles from NMR data with kinematic models.Nucleic Acids Res. 2014 Sep;42(15):9562-72. doi: 10.1093/nar/gku707. Epub 2014 Aug 11. Nucleic Acids Res. 2014. PMID: 25114056 Free PMC article.
-
A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed.J Am Chem Soc. 2013 Apr 10;135(14):5457-66. doi: 10.1021/ja400920w. Epub 2013 Mar 28. J Am Chem Soc. 2013. PMID: 23473378 Free PMC article.
References
-
- de Dios AC, Pearson JG, Oldfield E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science. 1993;260:1491–1496. - PubMed
-
- Wishart DS, Case DA. Use of chemical shifts in macromolecular structure determination. Meth Enzymol. 2001;338:3–34. - PubMed
-
- Case DA. Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR. 1995;6:341–346. - PubMed
-
- Cornilescu GG, Delaglio FF, Bax AA. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 1999;13:289–302. - PubMed
-
- Ghose R, Marino J, Wiberg K, Prestegard J. Dependence of 13C Chemical Shifts on Glycosidic Torsional Angles in Ribonucleic Acids. J. Am. Chem. Soc. 1994;116:8827–8828.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources