Conserving energy with sulfate around 100 °C--structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus
- PMID: 23324858
- DOI: 10.1039/c2mt20225e
Conserving energy with sulfate around 100 °C--structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus
Abstract
Sulfate-reducing bacteria and archaea are important players in the biogeochemical sulfur cycle. ATP sulfurylase, adenosine 5'-phosphosulfate reductase and dissimilatory sulfite reductase are the key enzymes in the energy conserving process of SO4(2-) → H2S reduction. This review summarizes recent advances in our understanding of the activation of sulfate to adenosine 5'-phosphosulfate, the following reductive cleavage to SO3(2-) and AMP, and the final six-electron reduction of SO3(2-) to H2S in the hyperthermophilic archaeon Archaeoglobus fulgidus. Structure based mechanisms will be discussed for these three enzymes which host unique metal centers at their catalytic sites.
Similar articles
-
Reaction cycle of the dissimilatory sulfite reductase from Archaeoglobus fulgidus.Biochemistry. 2010 Oct 19;49(41):8912-21. doi: 10.1021/bi100781f. Biochemistry. 2010. PMID: 20822098
-
Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus.J Mol Biol. 2008 Jun 20;379(5):1063-74. doi: 10.1016/j.jmb.2008.04.027. Epub 2008 May 20. J Mol Biol. 2008. PMID: 18495156
-
Crystal structure of adenosine 5'-phosphosulfate kinase isolated from Archaeoglobus fulgidus.Biochem Biophys Res Commun. 2023 Feb 5;643:105-110. doi: 10.1016/j.bbrc.2022.12.081. Epub 2022 Dec 29. Biochem Biophys Res Commun. 2023. PMID: 36592583
-
Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration.J Mol Microbiol Biotechnol. 2005;10(2-4):223-33. doi: 10.1159/000091567. J Mol Microbiol Biotechnol. 2005. PMID: 16645317 Review.
-
Biofilm formation in hyperthermophilic Archaea.Methods Enzymol. 1999;310:335-49. doi: 10.1016/s0076-6879(99)10027-2. Methods Enzymol. 1999. PMID: 10547803 Review. No abstract available.
Cited by
-
Evolutionary history and origins of Dsr-mediated sulfur oxidation.ISME J. 2024 Jan 8;18(1):wrae167. doi: 10.1093/ismejo/wrae167. ISME J. 2024. PMID: 39206688 Free PMC article.
-
Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.Front Microbiol. 2015 Dec 24;6:1392. doi: 10.3389/fmicb.2015.01392. eCollection 2015. Front Microbiol. 2015. PMID: 26733949 Free PMC article.
-
Expanded Genomic Sampling Refines Current Understanding of the Distribution and Evolution of Sulfur Metabolisms in the Desulfobulbales.Front Microbiol. 2021 May 19;12:666052. doi: 10.3389/fmicb.2021.666052. eCollection 2021. Front Microbiol. 2021. PMID: 34093483 Free PMC article.
-
Nitrite reductase activity in F420-dependent sulphite reductase (Fsr) from Methanocaldococcus jannaschii.Access Microbiol. 2023 Apr 20;5(4):acmi000482.v3. doi: 10.1099/acmi.0.000482.v3. eCollection 2023. Access Microbiol. 2023. PMID: 37223055 Free PMC article.
-
The complete genome sequence and emendation of the hyperthermophilic, obligate iron-reducing archaeon "Geoglobus ahangari" strain 234(T).Stand Genomic Sci. 2015 Oct 9;10:77. doi: 10.1186/s40793-015-0035-8. eCollection 2015. Stand Genomic Sci. 2015. PMID: 26457129 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources