Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 28;18(48):7184-93.
doi: 10.3748/wjg.v18.i48.7184.

Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal

Affiliations

Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal

Yao-Yao Gong et al. World J Gastroenterol. .

Abstract

Aim: To investigate the effect of sulfated cholecystokinin-8 (CCK-8S) on calcium mobilization in cultured murine gastric antral interstitial cells of Cajal (ICC) and its possible mechanisms.

Methods: ICC were isolated from the gastric antrum of mice and cultured. Immunofluorescence staining with a monoclonal antibody for c-Kit was used to identify ICC. The responsiveness of ICC to CCK-8S was measured using Fluo-3/AM based digital microfluorimetric measurement of intracellular Ca(2+) concentration ([Ca(2+)]i). A confocal laser scanning microscope was used to monitor [Ca(2+)]i changes. The selective CCK(1) receptor antagonist lorglumide, the intracellular Ca(2+)-ATPase inhibitor thapsigargin, the type III inositol 1,4,5-triphosphate (InsP(3)) receptor blocker xestospongin C and the L-type voltage-operated Ca(2+) channel inhibitor nifedipine were used to examine the mechanisms of [Ca(2+)]i elevation caused by CCK-8S. Immunoprecipitation and Western blotting were used to determine the regulatory effect of PKC on phosphorylation of type III InsP(3) receptor (InsP(3)R3) in ICC. Protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and inhibitor chelerythrine were used to assess the role of PKC in the CCK-8S-evoked [Ca(2+)]i increment of ICC.

Results: ICC were successfully isolated from the gastric antrum of mice and cultured. Cultured ICC were identified by immunofluorescence staining. When given 80 nmol/L or more than 80 nmol/L CCK-8S, the [Ca(2+)]i in ICC increased and 100 nmol/L CCK-8S significantly increased the mean [Ca(2+)]i by 59.30% ± 4.85% (P < 0.01). Pretreatment of ICC with 5 μmol/L lorglumide inhibited 100 nmol/L CCK-8S-induced [Ca(2+)]i increment from 59.30% ± 4.85% to 14.97% ± 9.05% (P < 0.01), suggesting a CCK(1)R-mediated event. Emptying of intracellular calcium stores by thapsigargin (5 μmol/L) prevented CCK-8S (100 nmol/L) from inducing a [Ca(2+)]i increase. Moreover, pretreatment with xestospongin C (1 μmol/L) could also abolish the CCK-8S-induced effect, indicating that Ca(2+) release from InsP(3)R-operated stores appeared to be a major mechanism responsible for CCK-8S-induced calcium mobilization in ICC. On the other hand, by removing extracellular calcium or blocking the L-type voltage-operated calcium channel with nifedipine, a smaller but significant rise in the [Ca(2+)]i could be still elicited by CCK-8S. These data suggest that the [Ca(2+)]i release is not stimulated or activated by the influx of extracellular Ca(2+) in ICC, but the influx of extracellular Ca(2+) can facilitate the [Ca(2+)]i increase evoked by CCK-8S. CCK-8S increased the phosphorylation of InsP(3)R3, which could be prevented by chelerythrine. Pretreatment with lorglumide (5 μmol/L) could significantly reduce the CCK-8S intensified phosphorylation of InsP(3)R3. In the positive control group, treatment of cells with PMA also resulted in an enhanced phosphorylation of InsP(3)R3. Pretreatment with various concentrations of PMA (10 nmol/L-10 μmol/L) apparently inhibited the effect of CCK-8S and the effect of 100 nmol/L PMA was most obvious. Likewise, the effect of CCK-8S was augmented by the pretreatment with chelerythrine (10 nmol/L-10 μmol/L) and 100 nmol/L chelerythrine exhibited the maximum effect.

Conclusion: CCK-8S increases [Ca(2+)]i in ICC via the CCK(1) receptor. This effect depends on the release of InsP(3)R-operated Ca(2+) stores, which is negatively regulated by PKC-mediated phosphorylation of InsP(3)R3.

Keywords: Calcium mobilization; Cholecystokinin octapeptide; Interstitial cells of Cajal; Protein kinase C.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Identification of cultured interstitial cells of Cajal. A-C: Prolonging the culture to 4-7 d, the cultured interstitial cells of Cajal (ICC), which are identified by c-Kit immunofluorescence, had distinctive shapes such as spindle, triangular or stellar-like with two to five long processes. ICC were fixed with acetone and identified immunologically using a monoclonal c-Kit antibody and Alexa Fluor 488-conjugated secondary fluorescent antibody. Nuclei were stained with Hoechst 33258 dye (B, blue); C: A merged image of A and B; D: A light microscopic image of ICC.
Figure 2
Figure 2
The regulation of sulfated cholecystokinin-8 on [Ca2+]i in cultured interstitial cells of Cajal from the murine gastric antrum. A1: Fluorescent intensity image of Fluo-3/AM loaded cultured interstitial cells of Cajal (ICC) under normal conditions; A2-6: Fluorescent intensity gradually increased in the presence of cholecystokinin-8 (CCK-8S) (100 nmol/L); B-E: Effects of different concentrations of sulfated CCK-8S on mean [Ca2+]i. In each case, cells from at least five different cell cultures; F: Effects of CCK-8S were estimated as percentage of ΔF/F0, where F0 was derived from the averaged intensity of the first 10-30 frames minus the background in the cell-free region and ΔF is fluorescent intensity of the response minus F0. aP < 0.05, bP < 0.01 vs control.
Figure 3
Figure 3
Sulfated cholecystokinin-8 activates interstitial cells of Cajal through the cholecystokinin1 receptor. A: Compared with the control; B: Lorglumide significantly inhibited cholecystokinin-8 (CCK-8S)-induced increase in [Ca2+]i of interstitial cells of Cajal; C: Quantification of [Ca2+]i changes shown in A and B. Each experiment was repeated at least three times. bP < 0.01 vs control.
Figure 4
Figure 4
Sulfated cholecystokinin-8 induced calcium mobilization in cultured interstitial cells of Cajal. A, B: Pretreatment with 5 μmol/L thapsigargin (A) or 1 μmol/L xestospongin C (B) completely abolished sulfated cholecystokinin-8 (CCK-8S)-induced [Ca2+]i increases; C: Addition of nifedipine resulted in a smaller peak of [Ca2+]i in comparison with normal conditions; D: The CCK-8S-elicited [Ca2+]i increase in the calcium-free medium was lower than that in the calcium-containing buffer; E: Quantification of [Ca2+]i changes following addition of nifedipine or removal of extracellular Ca2+. The fluorescence was normalized as F1/F0 (F1: Maximal fluorescence after drug addition; F0: Basal fluorescence before drug addition). bP < 0.01 vs control.
Figure 5
Figure 5
Sulfated cholecystokinin-8 stimulation of interstitial cells of Cajal resulted in the protein kinase C-dependent phosphorylation of type III inositol 1,4,5-triphosphate receptor. A: Western blots of proteins were immunoprecipitated with type III inositol 1,4,5-triphosphate receptor (InsP3R3)-specific antibody. The immunoprecipitated proteins were probed with antibody specific for phosphorylated Ser/Thr protein kinase C (PKC) substrate sequences. The sulfated cholecystokinin-8 (CCK-8S)-induced phosphorylation of InsP3R3 was apparently inhibited by pretreatment with chelerythine. Pretreatment with lorglumide (5 μmol/L) could significantly reduce the CCK-8S intensified phosphorylation of InsP3R3. In the positive control group, treatment of cells with phorbol-12-myristate-13-acetate (PMA) also resulted in an enhanced phosphorylation of InsP3R3; B: The nitrocellulose membrane in A was stripped and reprobed with InsP3R3 (1:1000) to determine the levels of InsP3R3 immunoprecipitated. Each cell sample contained nearly equal amounts of InsP3R3.
Figure 6
Figure 6
Effects of phorbol-12-myristate-13-acetate on sulfated cholecystokinin-8-evoked Ca2+ signaling in interstitial cells of Cajal. Fluo-3-loaded interstitial cells of Cajal were pretreated with various concentrations of Phorbol-12-myristate-13-acetate (PMA) (A: 10 nmol/L; B: 100 nmol/L; C: 1 μmol/L; D: 10 μmol/L) for 4 min before addition of sulfated cholecystokinin-8 (CCK-8S) (100 nmol/L). All could significantly reduce the CCK-8S-evoked [Ca2+]i response; E: Quantification of [Ca2+]i changes shown in A-D. Each experiment was repeated at least three times. bP < 0.01 vs control.
Figure 7
Figure 7
Effects of chelerythrine on Sulfated cholecystokinin-8-evoked Ca2+ signaling in interstitial cells of Cajal. Fluo-3-loaded interstitial cells of Cajal were pretreated with various concentrations of chelerythrine (A: 10 nmol/L; B: 100 nmol/L; C: 1 μmol/L; and D: 10 μmol/L) for 2 min before administration of cholecystokinin-8 (CCK-8S) (100 nmol/L). All could significantly increase the CCK-8S-evoked [Ca2+]i response; E: Quantification of [Ca2+]i changes shown in A-D. Each experiment was repeated at least three times. bP < 0.01 vs control.

Similar articles

Cited by

References

    1. Boddy G, Bong A, Cho W, Daniel EE. ICC pacing mechanisms in intact mouse intestine differ from those in cultured or dissected intestine. Am J Physiol Gastrointest Liver Physiol. 2004;286:G653–G662. - PubMed
    1. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–343. - PubMed
    1. Ordög T, Ward SM, Sanders KM. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518(Pt 1):257–269. - PMC - PubMed
    1. van Helden DF, Imtiaz MS, Nurgaliyeva K, von der Weid P, Dosen PJ. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol. 2000;524(Pt 1):245–265. - PMC - PubMed
    1. Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci. 2000;20:1393–1403. - PMC - PubMed

Publication types

MeSH terms