Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e49286.
doi: 10.1371/journal.pone.0049286. Epub 2013 Jan 11.

Non-alcoholic fatty liver disease is closely associated with sub-clinical inflammation: a case-control study on Asian Indians in North India

Affiliations

Non-alcoholic fatty liver disease is closely associated with sub-clinical inflammation: a case-control study on Asian Indians in North India

Priyanka Nigam et al. PLoS One. 2013.

Abstract

Objectives: Association between sub-clinical inflammation and non-alcoholic fatty liver disease (NAFLD) has not been studied in Asian Indians. In this case-control study, we aimed to analyse association of NAFLD with the sub-clinical inflammation and metabolic profile in Asian Indians in north India.

Methods: Ultrasound diagnosed 120 cases of NAFLD were compared to 152 healthy controls without NAFLD. Anthropometric profile [body mass index (BMI), waist circumference (WC), hip circumference (HC)], high-sensitivity C-reactive protein (hs-CRP), metabolic profile [fasting blood glucose (FBG), lipid profile] and hepatic function tests [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] were recorded.

Results: Metabolic parameters [FBG, total cholesterol (TC), serum triglycerides (TG),low-density lipoprotein (LDL-c)], hs-CRP and prevalence of the metabolic syndrome were higher in cases as compared to controls (p-value<0.05 for all). The median (range) of hs-CRP (mg/L) for cases [2.6(0.2-13.4)] were significantly higher than in controls [1.4(0.03-11.4), p = 0.01]. Similarly, higher values of hs-CRP were obtained when subgroups of cases with obesity, abdominal obesity and the metabolic syndrome were compared to controls [2.75 (0.03-14.3) vs. 1.52 (0.04-14.3), p = 0.0010; 2.8 (0.03-14.3) vs. 1.5 (0.06-14.3), p = 0.0014 and 2.7 (0.5-14.3) vs. 1.6 (0.06-8.5), p = 0.0013, respectively. On multivariate logistic regression analysis BMI (p = 0.001), WC (p = 0.001), FBG (p = 0.002), TC (p = 0.008), TG (p = 0.002), blood pressure (p = 0.005), metabolic syndrome (p = 0.001) and hs-CRP (p = 0.003) were significantly and independently associated with NAFLD. After adjusting for significant variables, the association between high hs-CRP and NAFLD remained large and statistically significant [adjusted OR = 1.17, 95% confidence interval (CI) = 1.05-1.29]. An increase in 1 mg/dl of hs-CRP level calculated to increase the risk of developing NAFLD by 1.7 times as compared to controls after adjusting for significant variables associated with NAFLD.

Conclusions: In this cohort of Asian Indians in North India, presence of NAFLD showed independent relationships with sub-clinical inflammation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Box plot representation of hs-CRP levels in subjects with non-alcoholic fatty liver disease and in controls having overweight and obesity (a), abdominal obesity (b), and the metabolic syndrome (c).
Each box comprises the values between the 25th and the 75th percentiles, and the bold horizontal line is the median value; the whiskers stretch from the 10th and to the 90th percentile. Circles represent individual outlier's value. Stars represent extremes value of individual.

Similar articles

Cited by

References

    1. Ridker PM, Buring JE, Cook NR, Rifai N (2003) C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 107: 391–7. - PubMed
    1. Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, et al. (2001) The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 50: 2384–9. - PubMed
    1. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE (2005) Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. Jama 294: 326–33. - PubMed
    1. Vikram NK, Misra A, Dwivedi M, Sharma R, Pandey RM, et al. (2003) Correlations of C-reactive protein levels with anthropometric profile, percentage of body fat and lipids in healthy adolescents and young adults in urban North India. Atherosclerosis 168: 305–13. - PubMed
    1. Socha P, Wierzbicka A, Neuhoff-Murawska J, Wlodarek D, Podlesny J, et al. (2007) Nonalcoholic fatty liver disease as a feature of the metabolic syndrome. Rocz Panstw Zakl Hig 58: 129–37. - PubMed

Publication types

MeSH terms