Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e52551.
doi: 10.1371/journal.pone.0052551. Epub 2013 Jan 9.

Survival of the stillest: predator avoidance in shark embryos

Affiliations

Survival of the stillest: predator avoidance in shark embryos

Ryan M Kempster et al. PLoS One. 2013.

Abstract

Sharks use highly sensitive electroreceptors to detect the electric fields emitted by potential prey. However, it is not known whether prey animals are able to modulate their own bioelectrical signals to reduce predation risk. Here, we show that some shark (Chiloscyllium punctatum) embryos can detect predator-mimicking electric fields and respond by ceasing their respiratory gill movements. Despite being confined to the small space within the egg case, where they are vulnerable to predators, embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response. Knowledge of such behaviours, may inform the development of effective shark repellents.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. A–C.
Photographs depicting three major life stages of the bamboo shark (Chiloscyllium punctatum). A: Embryo encapsulated within an egg case. B: Early juvenile (post hatching) showing its high contrast banding pattern. C. Sexually mature individual that has lost its banding leaving a more typical counter-shading pattern, which it uses to camouflage itself on the substrate. Scale bars = 10 mm.
Figure 2
Figure 2. Average freeze response duration (±2×Standard Error) of bamboo shark embryos (stage 32–34) to a range of sinusoidal frequencies (0–20 Hz) and stimulus intensities (0.4–2.1 µV/cm).
Shaded bar corresponds to natural respiratory signals produced by potential predators (1.0–2.0 Hz) and low frequency modulations of D.C. fields produced by approaching predators as they move relative to an object (0.1–1.0 Hz) . Peak response frequency: 0.5 Hz; duration: mean 18.9 secs.
Figure 3
Figure 3. A–I.
Freeze response duration (±2×Standard Error) of bamboo shark embryos (stages 32–34) to a range of sinusoidal frequencies (0–20 Hz) and stimulus intensities (0.4–2.1 µV/cm). Embryos are categorised into nine groups according to their relative stage in development and intensity of the electric field strength exposure. A: Stage 32 embryos exposed to 1.9–2.1 µV/cm (peak response frequency: 0.5 Hz; duration: mean 16.7 secs). B: Stage 32 embryos exposed to 0.9–1.1 µV/cm (peak response frequency: 0.5 Hz; duration: mean 14.9 secs). C: Stage 32 embryos exposed to 0.4–0.6 µV/cm (peak response frequency: 0.5 Hz; duration: mean 0.3 secs). D: Stage 33 embryos exposed to 1.9–2.1 µV/cm (peak response frequency: 0.75 Hz; duration: mean 27.7 secs). E: Stage 33 embryos exposed to 0.9–1.1 µV/cm (peak response frequency: 1.0 Hz; duration: mean 13.8 secs). F: Stage 33 embryos exposed to 0.4–0.6 µV/cm (peak response frequency: 0.5 Hz; duration: mean 3.7 secs). G: Stage 34 embryos exposed to 1.9–2.1 µV/cm (peak response frequency: 0.5 Hz; duration: mean 59.4 secs). H: Stage 34 embryos exposed to 0.9–1.1 µV/cm (peak response frequency: 0.5 Hz; duration: mean 38.4 secs). I: Stage 34 embryos exposed to 0.4–0.6 µV/cm (peak response frequency: 0.5 Hz; duration: mean 15.8 secs).
Figure 4
Figure 4. Relative freeze response duration when embryos (stage 34) are repeatedly exposed to the same stimulus at set time intervals after the first (initial) response.
Embryos were individually exposed to the same stimulus to get an average initial response time. Embryos were then exposed to the same stimulus 60 minutes after initial response, and re-exposed at decreasing time intervals. Response duration is expressed as a percentage of the initial response.
Figure 5
Figure 5. Experimental apparatus used to study the response of bamboo shark embryos to predator simulating dipole electric fields.
A function generator and stimulus controller were used to deliver a dipole electric field of specific intensity and frequency to electrodes positioned along the same longitudinal axis as the embryo. Embryo responses were recorded with a video camera positioned directly in front of the experimental tank.

Similar articles

Cited by

References

    1. Kalmijn A (1971) The electric sense of sharks and rays. J Exp Biol 55: 371–383. - PubMed
    1. Kempster RM, McCarthy ID, Collin SP (2012) Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J Fish Biol 80: 2055–2088. - PubMed
    1. Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202: 129–132. - PubMed
    1. Sisneros JA, Tricas TC, Luer CA (1998) Response properties and biological function of the skate electrosensory system during ontogeny. J Comp Physiol A 183: 87–99. - PubMed
    1. Peters RC, Evers HP (1985) Frequency selectivity in the ampullary system of an elasmobranch fish (Scyliorhinus canicula). J Exp Biol 118: 99–109.

Publication types

LinkOut - more resources