Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;7(1):e2007.
doi: 10.1371/journal.pntd.0002007. Epub 2013 Jan 10.

Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus

Affiliations

Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus

David P Tchouassi et al. PLoS Negl Trop Dis. 2013.

Abstract

Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO(2)-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO(2) alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Map of Kenya showing the location of the study sites.
Figure 2
Figure 2. Trap design using CDC trap without a light bulb for field evaluation.
(A) crude animal skin odors: arrangement of canister and CO2 released at the bottom of the Igloo container all placed close to the fan of the trap; (B) synthetic compounds released from a 0.5 ml tube placed under the Igloo close to the air flow of CO2.
Figure 3
Figure 3. Mean daily captures of RVFV vectors in the different trap treatments in 11 replicate trials.
(A) primary vectors (Ae. mcintoshi and Ae. ochraceus); secondary vectors comprising (B) total Culex spp.; (C) total Mansonia spp. Control, CO2-baited traps only; host treatments represent skin odors from each host type combined with CO2. Treatments followed by the same letters are not significantly different at P = 0.05 following generalized linear model (GLM) with negative binomial error structure and log link in R 2.11.0 software; Error bars indicate standard error of the mean.
Figure 4
Figure 4. Representative GC-EAD profiles using wild caught adult female Ae. mcintoshi to the different host odors.
(A) Cow (B) Donkey (C) Human (D) Goat (E) Sheep. Upper traces are FID (chemical profile) of the respective host odor and lower traces are EAD responses. Regardless of host type, similar responses to the four aldehydes (whose peaks are labeled in the uppermost trace) were reproducibly recorded not only in this species but in Ae. ochraceus and diverse species of Culex and Mansonia which are secondary RVFV vectors (n = 3). (Scale bar in all the GC-EAD runs, 1 mV.)

References

    1. Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, et al. (2002) An outbreak of Rift Valley fever in northeastern Kenya, 1997–1998. Emerg Infect Dis 8: 138–144. - PMC - PubMed
    1. World Health Organization (2010) information sheet: Haemorrhagic fevers, Viral.
    1. LaBeaud AD, Bashir F, King CH (2011) Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Metr 9: 1. - PMC - PubMed
    1. European Food Safety Authority (EFSA) (2005) Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to “The Risk of a Rift Valley Fever Incursion and its Persistence within the Community”. Europ Food Safety Auth J 3 (10) 1–128.
    1. Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J (2010) Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. J Vet Res 41: 61. - PMC - PubMed

Publication types

MeSH terms