Empirical Assessment of Within-Arm Correlation Imputation in Trials of Continuous Outcomes [Internet]
- PMID: 23326900
- Bookshelf ID: NBK115797
Empirical Assessment of Within-Arm Correlation Imputation in Trials of Continuous Outcomes [Internet]
Excerpt
Objectives: To better understand how to impute within-arm correlation for meta-analyses of continuous outcomes when data are missing, this study describes the range of correlation values in a representative set of studies with sufficient data reported, and simulates the effect of using different correlation values on meta-analysis summary estimates when imputing missing data.
Background: It is common that studies do not report sufficient data to allow meta-analysis of continuous outcomes. The standard error (SE) of the within-group differences is often not reported and cannot be calculated because the within-group correlation is unknown. For meta-analysis of net-changes, one must thus estimate the SE based on an arbitrarily chosen correlation.
Methods:
From articles available to us from previous systematic reviews and from trials registered at
Results: We analyzed 811 within-group correlation values from 123 studies with 281 study groups. The median (interquartile range) within-group correlation values across all studies was 0.59 (0.40, 0.81). Active treatment groups had lower correlation values (median 0.54) than no treatment groups (median 0.73, P<0.001). There was heterogeneity of correlation values across both outcome types and clinical domains. There was no apparent association with followup duration, but correlation values were lower with increasing sample size among no treatment groups. In the empiric dataset, imputing low correlation values (0 or 0.25) yielded an overestimation of the within-group SE in more than 85 percent of cases; imputing a correlation of 0.5 yielded values closer to those actually reported. Imputation had similar effects on the net-change SE. Simulation studies informed by the empirical results, demonstrated that imputation of values does not introduce bias in the meta-analysis estimate. Imputing values higher than the true correlation resulted in coverage probabilities that were lower than those in analyses using the complete data. However, coverage probabilities were generally lower than nominal (<0.95 even with complete data) in the presence of moderate to substantial between study heterogeneity, despite using random effects models (DerSimonian-Laird).
Conclusions: Negative within-group correlation values are very uncommon in clinical studies. Imputing values in meta-analyses where some or all within-group correlation estimates are not reported does not introduce bias in the summary estimate of the treatment effect. However, imputation can affect the SE of the summary estimate when the imputed value is different from the “true.” In such cases, sensitivity analyses using alternative imputation values, possibly informed by studies reporting relevant information, are recommended.
Sections
Similar articles
-
Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study.BMC Med Res Methodol. 2019 Jul 23;19(1):161. doi: 10.1186/s12874-019-0793-x. BMC Med Res Methodol. 2019. PMID: 31345166 Free PMC article.
-
Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force [Internet].Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Feb. Report No.: 19-05257-EF-1. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Feb. Report No.: 19-05257-EF-1. PMID: 32129963 Free Books & Documents. Review.
-
Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force [Internet].Rockville (MD): Agency for Healthcare Research and Quality (US); 2018 Sep. Report No.: 18-05239-EF-1. Rockville (MD): Agency for Healthcare Research and Quality (US); 2018 Sep. Report No.: 18-05239-EF-1. PMID: 30354042 Free Books & Documents. Review.
-
Small class sizes for improving student achievement in primary and secondary schools: a systematic review.Campbell Syst Rev. 2018 Oct 11;14(1):1-107. doi: 10.4073/csr.2018.10. eCollection 2018. Campbell Syst Rev. 2018. PMID: 37131395 Free PMC article.
-
The future of Cochrane Neonatal.Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12. Early Hum Dev. 2020. PMID: 33036834
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources