Mathematical analysis of multisolute renal flow in a single nephron model of the kidney
- PMID: 2332708
- DOI: 10.1007/BF00178780
Mathematical analysis of multisolute renal flow in a single nephron model of the kidney
Abstract
A single nephron model, which includes the Bowman's space, Cortical interstitium, and Pelvis as well-stirred baths, is investigated. A boundary value problem, which allows for pelvic reflux, is established for the fluid-multisolute flow in the nephron. The implicit function theorem is used to establish the existence and uniqueness of a solution of the boundary value problem for the case of small permeability coefficients and transport rates.
Similar articles
-
Existence and uniqueness of solutions in general multisolute renal flow problems.J Math Biol. 1988;26(4):455-64. doi: 10.1007/BF00276373. J Math Biol. 1988. PMID: 3199043
-
The juxtamedullary nephron preparation.Methods Mol Med. 2003;86:413-27. doi: 10.1385/1-59259-392-5:413. Methods Mol Med. 2003. PMID: 12886785 No abstract available.
-
Essential hypertension: a disorder of cortical nephron control.Lancet. 1981 Oct 24;2(8252):900-2. doi: 10.1016/s0140-6736(81)91393-3. Lancet. 1981. PMID: 6117685 No abstract available.
-
New pathways for potassium transport in the kidney.Am J Physiol. 1982 Apr;242(4):F297-312. doi: 10.1152/ajprenal.1982.242.4.F297. Am J Physiol. 1982. PMID: 7039362 Review.
-
Alterations in intrarenal blood flow distribution. Methods of measurement and relationship to sodium balance.Circ Res. 1973 May 5;32:Suppl 1:61-72. Circ Res. 1973. PMID: 4576386 Review. No abstract available.