Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 18:12:7.
doi: 10.1186/1476-069X-12-7.

Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study

Affiliations

Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study

Kyra Naumoff Shields et al. Environ Health. .

Abstract

Background: While air pollution exposures have been linked to cardiovascular outcomes, the contribution from acute gas and particle traffic-related pollutants remains unclear. Using a panel study design with repeated measures, we examined associations between personal exposures to traffic-related air pollutants in Mexico City and changes in heart rate variability (HRV) in a population of researchers aged 22 to 56 years.

Methods: Participants were monitored for approximately 9.5 hours for eight days while operating a mobile laboratory van designed to characterize traffic pollutants while driving in traffic and "chasing" diesel buses. We examined the association between HRV parameters (standard deviation of normal-to-normal intervals (SDNN), power in high frequency (HF) and low frequency (LF), and the LF/HF ratio) and the 5-minute maximum (or average in the case of PM(2.5)) and 30-, 60-, and 90-minute moving averages of air pollutants (PM(2.5), O(3), CO, CO(2), NO(2), NO(x), and formaldehyde) using single- and two-pollutant linear mixed-effects models.

Results: Short-term exposure to traffic-related emissions was associated with statistically significant acute changes in HRV. Gaseous pollutants - particularly ozone - were associated with reductions in time and frequency domain components (α = 0.05), while significant positive associations were observed between PM(2.5) and SDNN, HF, and LF. For ozone and formaldehyde, negative associations typically increased in magnitude and significance with increasing averaging periods. The associations for CO, CO(2), NO(2), and NO(x) were similar with statistically significant associations observed for SDNN, but not HF or LF. In contrast, PM(2.5) increased these HRV parameters.

Conclusions: Results revealed an association between traffic-related PM exposures and acute changes in HRV in a middle-aged population when PM exposures were relatively low (14 μg/m(3)) and demonstrate heterogeneity in the effects of different pollutants, with declines in HRV - especially HF - with ozone and formaldehyde exposures, and increases in HRV with PM(2.5) exposure. Given that exposure to traffic-related emissions is associated with increased risk of cardiovascular morbidity and mortality, understanding the mechanisms by which traffic-related emissions can cause cardiovascular disease has significant public health relevance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
a. Point estimates and 95% confidence intervals for PM2.5. Positive associations were observed for PM2.5 and SDNN, HF and LF. A negative association was observed for the LF/HF ratio. The largest increase observed wasa 7.7% (95% CI: 2.3 to 13.3) increase in HF per IQR 90-min PM2.5 (8.34 μg/m3). Figure 1b. Point estimates and 95% confidence intervals for CO and CO2. The largest declines in SDNN were 4.2% (95% CI: 1.8 to 6.5) per IQR 30-min CO (10 ppm) and 4.1% (95% CI: 1.8 to 6.3) per IQR 60-min CO2 (104 ppm). Figure 1c. Point estimates and 95% confidence intervals for NO¬2 and NOx. The associations for CO, CO2, NO2 and NOx (which were all correlated) were similar with statistically significant associations observed for SDNN and, in a few instances, the LF/HF ratio, but not HF or LF. The influence of averaging period differed for each pollutant. The largest declines in SDNN for each pollutant were a 3.9% (95% CI: 1.7 to 6.1) per IQR 60-min NO2 (155ppb), and 4.4% (95% CI: 2.2 to 6.5) per IQR 30-min NOx (240 ppb). Figure 1d. Point estimates and 95% confidence intervals for ozone and formaldehyde. Associations increased in magnitude and significance with increasing averaging periods for all HRV parameters except the LF/HF ratio. The largest effects were observed for HF, including a 16% (95% CI: 9.0 to 23.4) decline per IQR 90-min ozone (65 ppb) and a 12% (95% CI: 3.1 to 20.3) decline per IQR 90-min formaldehyde (34 ppb).

Similar articles

Cited by

References

    1. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, Smith DF, Garcia C, Chang ET, Bernstein L. Long-term Exposure to Air Pollution and Cardiorespiratory Disease in the California Teachers Study Cohort. Am J Respir Crit Care Med. 2011;184:828–835. doi: 10.1164/rccm.201012-2082OC. - DOI - PMC - PubMed
    1. Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A. Effects of particulate matter (PM(10), PM(2.5) and PM(1)) on the cardiovascular system. Toxicology. 2009;261:1–8. doi: 10.1016/j.tox.2009.04.035. - DOI - PubMed
    1. Pope CA Jr, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109:71–77. - PubMed
    1. Chuang KJ, Coull BA, Zanobetti A, Suh H, Schwartz J, Stone PH, Litonjua A, Speizer FE, Gold DR. Particulate air pollution as a risk factor for ST-segment depression in patients with coronary artery disease. Circulation. 2008;118:1314–1320. doi: 10.1161/CIRCULATIONAHA.108.765669. - DOI - PMC - PubMed
    1. Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environ Health Perspect. 2011;119:501–507. - PMC - PubMed

Publication types