On Liénard's equation and the uniqueness of limit cycles in predator-prey systems
- PMID: 2332710
- DOI: 10.1007/BF00178782
On Liénard's equation and the uniqueness of limit cycles in predator-prey systems
Abstract
We study a system of ODE's modelling the interaction of one predator and one prey dx/dt = xg(x) - yp(x), dy/dt = gamma y[- delta - nu y - alpha y2 + h(x)]. This system defines a two-species community which incorporates competition among prey in the absence of any predators as well as a density-dependent predator specific death rate. This system is investigated under ecologically natural regularity conditions and assumptions on g, p and h to ensure the existence and uniqueness of limit cycles. The proof uses the standard Hopf-Andronov bifurcation theory and the technique of Liénard's equation.
Similar articles
-
Limit cycles in predator-prey models.Math Biosci. 1990 Feb;98(1):1-12. doi: 10.1016/0025-5564(90)90009-n. Math Biosci. 1990. PMID: 2134494
-
Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.Math Biosci. 2016 Apr;274:58-72. doi: 10.1016/j.mbs.2016.02.003. Epub 2016 Feb 10. Math Biosci. 2016. PMID: 26874217
-
The theory of prey-predator oscillations.Theor Popul Biol. 1976 Apr;9(2):137-50. doi: 10.1016/0040-5809(76)90041-1. Theor Popul Biol. 1976. PMID: 1273797 No abstract available.
-
Modelling the fear effect in predator-prey interactions.J Math Biol. 2016 Nov;73(5):1179-1204. doi: 10.1007/s00285-016-0989-1. Epub 2016 Mar 22. J Math Biol. 2016. PMID: 27002514
-
The subcritical collapse of predator populations in discrete-time predator-prey models.Math Biosci. 1992 Jun;110(1):45-66. doi: 10.1016/0025-5564(92)90014-n. Math Biosci. 1992. PMID: 1623297 Review.
References
-
- Bull Math Biol. 1986;48(2):137-48 - PubMed
MeSH terms
LinkOut - more resources
Research Materials