Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 May;48(5):531-9.
doi: 10.1165/rcmb.2012-0492TR.

The neutrophil in chronic obstructive pulmonary disease

Affiliations
Review

The neutrophil in chronic obstructive pulmonary disease

Kim Hoenderdos et al. Am J Respir Cell Mol Biol. 2013 May.

Abstract

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and has few effective therapies. It is characterized by anomalous and persistent inflammation, both local and systemic. Neutrophilic inflammation predominates in the COPD airway wall and lumen, but, despite the presence of abundant innate immune cells, the progressive clinical course of the disease is punctuated by recurrent infection-driven exacerbations. An extensive body of evidence (from cell culture to murine models and finally to the susceptibility of human patients with α1-antitrypsin deficiency to develop COPD) implicates neutrophil elastase and other neutrophil-derived proteases as key mediators of the tissue damage and relentless decline in lung function that occurs in this condition. In addition to the well recognized role of cytokines in modulating neutrophil function and survival, it has recently become apparent that hypoxia can influence neutrophil function, with impaired killing of pathogenic bacteria, enhanced release of proteases, and delayed apoptosis. This destructive neutrophil phenotype is predicted to be highly detrimental in the setting of the COPD microenvironment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms