Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 25;443(1-2):110-9.
doi: 10.1016/j.ijpharm.2012.12.042. Epub 2013 Jan 14.

Controlled drug release system based on cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) micelles

Affiliations

Controlled drug release system based on cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) micelles

Qin He et al. Int J Pharm. .

Abstract

Cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) (β-CD-PLA-mPEG), a well-defined amphiphilic copolymer, was synthesized by controlled ring-open copolymerization and click coupling reaction, in order to obtain a biocompatible drug delivery system with controlled release profiles. The β-CD-PLA-mPEG copolymer could self-assemble in aqueous solution to form micelles with a mean particle size of 173.4 nm, which will decrease to 159.2 nm after loaded with a kind of hydrophobic drug (indomethacin, IND). The IND-loaded β-CD-PLA-mPEG micelles show spherical shape within the nano-size scale under TEM imaging. Compared with that formed by PLA-mPEG, the micelles formed by β-CD-PLA-mPEG copolymer present higher drug loading efficiency and controlled release profile of IND, especially in the control of its initial burst release. Meanwhile, β-CD-PLA-mPEG copolymer exhibits low toxicity to cells. The micelles formed by β-CD-PLA-mPEG copolymer could be a promising controlled release system for various hydrophobic drugs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources