Present technology and future trends in point-of-care microfluidic diagnostics
- PMID: 23329432
- DOI: 10.1007/978-1-62703-134-9_1
Present technology and future trends in point-of-care microfluidic diagnostics
Abstract
This work reviews present technologies and developing trends in Point-of-Care (POC) microfluidic diagnostics platforms. First, various fluidics technologies such as pressure-driven flows, capillary flows, electromagnetically driven flows, centrifugal fluidics, acoustically driven flows, and droplet fluidics are categorized. Then three broad categories of POC microfluidic testing devices are considered: lateral flow devices, desktop and handheld POC diagnostic platforms, and emergent molecular diagnostic POC systems. Such evolving trends as miniaturization, multiplexing, networking, new more sensitive detection schemes, and the importance of sample processing are discussed. It is concluded that POC microfluidic diagnostics has a potential to improve patient treatment outcome and bring substantial savings in overall healthcare costs.
Similar articles
-
Microfluidic technology for molecular diagnostics.Adv Biochem Eng Biotechnol. 2013;133:89-114. doi: 10.1007/10_2012_139. Adv Biochem Eng Biotechnol. 2013. PMID: 22864841 Review.
-
Microfluidic devices for diagnostic applications.Expert Rev Mol Diagn. 2011 Jun;11(5):505-19. doi: 10.1586/erm.11.25. Expert Rev Mol Diagn. 2011. PMID: 21707459 Review.
-
Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.Biotechnol J. 2013 Nov;8(11):1267-79. doi: 10.1002/biot.201200386. Epub 2013 Sep 6. Biotechnol J. 2013. PMID: 24019250 Review.
-
Advances in paper-based point-of-care diagnostics.Biosens Bioelectron. 2014 Apr 15;54:585-97. doi: 10.1016/j.bios.2013.10.075. Epub 2013 Nov 19. Biosens Bioelectron. 2014. PMID: 24333570 Review.
-
Advances in point-of-care technologies for molecular diagnostics.Biosens Bioelectron. 2017 Dec 15;98:494-506. doi: 10.1016/j.bios.2017.07.024. Epub 2017 Jul 11. Biosens Bioelectron. 2017. PMID: 28728010 Review.
Cited by
-
Integrating Bio-Sensing Array with Blood Plasma Separation on a Centrifugal Platform.Sensors (Basel). 2023 Feb 3;23(3):1710. doi: 10.3390/s23031710. Sensors (Basel). 2023. PMID: 36772748 Free PMC article.
-
Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer.J Biomed Opt. 2017 Jul 1;22(7):75002. doi: 10.1117/1.JBO.22.7.075002. J Biomed Opt. 2017. PMID: 28732094 Free PMC article.
-
Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification.Microarrays (Basel). 2015 Oct 20;4(4):474-89. doi: 10.3390/microarrays4040474. Microarrays (Basel). 2015. PMID: 27600235 Free PMC article. Review.
-
A Self-Driven Microfluidic Chip for Ricin and Abrin Detection.Sensors (Basel). 2022 May 2;22(9):3461. doi: 10.3390/s22093461. Sensors (Basel). 2022. PMID: 35591151 Free PMC article.
-
Microfluidic Device with an Integrated Freeze-Dried Cell-Free Protein Synthesis System for Small-Volume Biosensing.Micromachines (Basel). 2020 Dec 29;12(1):27. doi: 10.3390/mi12010027. Micromachines (Basel). 2020. PMID: 33383890 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources