Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013:949:241-68.
doi: 10.1007/978-1-62703-134-9_17.

Surface treatments for microfluidic biocompatibility

Affiliations
Review

Surface treatments for microfluidic biocompatibility

N J Shirtcliffe et al. Methods Mol Biol. 2013.

Abstract

Microfluidic systems allow small volumes of liquids to be manipulated, either by being passed through channels or moved around as liquid droplets. Such systems have been developed to separate, purify, analyze, and deliver molecules to reaction zones. Although volumes are small, reaction rates, catalysis, mixing, and heat transfer can be high, enabling the accurate sensing of tiny quantities of agents and the synthesis of novel products. The incorporation of multiple components, such as pumps, valves, mixers, and heaters, onto a single microfluidic platform has brought about the field of lab-on-a-chip devices or micro total analysis systems (μTAS). Although used in the research laboratory for numerous years, few of these devices have made it into the commercial market, due to their complexity of fabrication and limited choice of material. As the dimensions of these systems become smaller, interfacial interactions begin to dominate in terms of device performance. Appropriate selection of bulk materials, or the application of surface coatings, can allow control over surface properties, such as the adsorption of (bio)molecules. Here we review current microfluidic technology in terms of biocompatibility issues, examining the use of modification strategies to improve device longevity and performance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources