Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex
- PMID: 23333316
- DOI: 10.1016/j.cub.2012.12.030
Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex
Abstract
The centrosome functions as the main microtubule-organizing center of animal cells and is crucial for several fundamental cellular processes. Abnormalities in centrosome number and composition correlate with tumor progression and other diseases. Although proteomic studies have identified many centrosomal proteins, their interactions are incompletely characterized. The lack of information on the precise localization and interaction partners for many centrosomal proteins precludes comprehensive understanding of centrosome biology. Here, we utilize a combination of selective chemical crosslinking and superresolution microscopy to reveal novel functional interactions among a set of 31 centrosomal proteins. We reveal that Cep57, Cep63, and Cep152 are parts of a ring-like complex localizing around the proximal end of centrioles. Furthermore, we identify that STIL, together with HsSAS-6, resides at the proximal end of the procentriole, where the cartwheel is located. Our studies also reveal that the known interactors Cep152 and Plk4 reside in two separable structures, suggesting that the kinase Plk4 contacts its substrate Cep152 only transiently, at the centrosome or within the cytoplasm. Our findings provide novel insights into protein interactions critical for centrosome biology and establish a toolbox for future studies of centrosomal proteins.
Copyright © 2013 Elsevier Ltd. All rights reserved.
Similar articles
-
Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication.Mol Cell Biol. 2020 Apr 28;40(10):e00535-19. doi: 10.1128/MCB.00535-19. Print 2020 Apr 28. Mol Cell Biol. 2020. PMID: 32152252 Free PMC article.
-
Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis.J Cell Sci. 2020 Jul 3;133(13):jcs241836. doi: 10.1242/jcs.241836. J Cell Sci. 2020. PMID: 32503940
-
STIL is required for centriole duplication in human cells.J Cell Sci. 2012 Mar 1;125(Pt 5):1353-62. doi: 10.1242/jcs.104109. Epub 2012 Feb 20. J Cell Sci. 2012. PMID: 22349705
-
A self-assembled cylindrical platform for Plk4-induced centriole biogenesis.Open Biol. 2020 Aug;10(8):200102. doi: 10.1098/rsob.200102. Epub 2020 Aug 19. Open Biol. 2020. PMID: 32810424 Free PMC article. Review.
-
[Centrosomal proteins].Biokhimiia. 1996 Aug;61(8):1347-65. Biokhimiia. 1996. PMID: 8962912 Review. Russian.
Cited by
-
Cep57 regulates human centrosomes through multivalent interactions.Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2305260121. doi: 10.1073/pnas.2305260121. Epub 2024 Jun 10. Proc Natl Acad Sci U S A. 2024. PMID: 38857398 Free PMC article.
-
TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin.Elife. 2021 Jan 25;10:e62640. doi: 10.7554/eLife.62640. Elife. 2021. PMID: 33491649 Free PMC article.
-
The central scaffold protein CEP350 coordinates centriole length, stability, and maturation.J Cell Biol. 2022 Dec 5;221(12):e202203081. doi: 10.1083/jcb.202203081. Epub 2022 Oct 31. J Cell Biol. 2022. PMID: 36315013 Free PMC article.
-
The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle.Cells. 2019 Jul 10;8(7):701. doi: 10.3390/cells8070701. Cells. 2019. PMID: 31295970 Free PMC article. Review.
-
Proximity interactions among centrosome components identify regulators of centriole duplication.Curr Biol. 2014 Mar 17;24(6):664-70. doi: 10.1016/j.cub.2014.01.067. Epub 2014 Mar 6. Curr Biol. 2014. PMID: 24613305 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials