Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jan-Feb;19(1):66-70.
doi: 10.1097/PPO.0b013e31827f123e.

Bone targeted therapies in metastatic castration-resistant prostate cancer

Affiliations
Review

Bone targeted therapies in metastatic castration-resistant prostate cancer

Shanna Rajpar et al. Cancer J. 2013 Jan-Feb.

Abstract

Prostate cancer is the most common male cancer. About 90% of metastatic patients will develop bone metastases. Bone disease is responsible of pain, deterioration of quality of life and serious bone complications. Proliferation of prostate cancer cells in the bone marrow induces osteoclast activation and osteolysis. Targeting the bone microenvironment reduces morbidity. Relevant preclinical and clinical studies of bone-targeted therapies in castration-resistant prostate cancer were identified in PubMed and clinical trial databases. Different drugs are available or in development that target bone resorption (bisphosphonates, RANK ligand inhibitors), bone formation (endothelin 1 inhibitors), cancer cell migration (SRC-family kinase inhibitors, vascular endothelial growth factor-MET inhibitors), and survival (radiopharmaceuticals). In phase III trials, zoledronic acid, denosumab, and radium-223 were shown to significantly delay skeletal-related events. Radium-223 was also shown to improve overall survival. Biomarkers of bone resorption (urinary N-telopeptide) and bone making (alkaline phosphatase) have an independent prognostic impact. Targeting the bone microenvironment is an important component of castration-resistant prostate cancer management to reduce bone complications and improve overall survival. Biomarkers of bone turnover have an independent prognostic impact.

PubMed Disclaimer

MeSH terms

LinkOut - more resources