Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 22:8:3.
doi: 10.1186/1745-6150-8-3.

Next-generation phylogenomics

Affiliations

Next-generation phylogenomics

Cheong Xin Chan et al. Biol Direct. .

Abstract

Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments) and depth (thousands of closely related strains, individuals or samples) unimaginable only a few years ago. Phylogenomics--the study of evolutionary relationships based on comparative analysis of genome-scale data--has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees). However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be) computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Simplified workflow of phylogenomic approaches. Workflow is shown for (A) the classical approach based on multiple sequence alignment, and (B) an alternative approach based on alignment-free methods, for a simple analysis example of homologous sequences 1, 2, 3 and 4, with a known phylogeny as a reference (shown on top). Sequence fragments that share the same ancestry across all four sequences (i.e. are highly similar among one another) are shown in the same colour (red, blue, yellow and orange regions in each sequence). In this example, the yellow and blue regions of sequences 2 and 4 have undergone rearrangement relative to 1 and 3. The dark yellow (in 1 and 2) and light yellow (in 3 and 4) regions are similar to each other. While the classical approach based on multiple sequence alignment (gaps introduced as dashed lines) yields an inaccurate phylogeny, the alternative alignment-free approach (grouping of sub-sequences) is not affected by the sequence rearrangement in 2 and 4, and yields the correct phylogeny. The difference between the two resulting phylogenetic trees is highlighted in red.

References

    1. Chan CX, Beiko RG, Darling AE, Ragan MA. Lateral transfer of genes and gene fragments in prokaryotes. Genome Biol Evol. 2009;1:429–438. - PMC - PubMed
    1. Puigbò P, Wolf YI, Koonin EV. The tree and net components of prokaryote evolution. Genome Biol Evol. 2010;2:745–756. doi: 10.1093/gbe/evq062. - DOI - PMC - PubMed
    1. Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc R Soc B. 2012;279:2246–2254. doi: 10.1098/rspb.2011.2301. - DOI - PMC - PubMed
    1. Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS One. 2012;7:5. - PMC - PubMed
    1. Rannala B, Yang ZH. Phylogenetic inference using whole genomes. Annu Rev Genom Hum Genet. 2008;9:217–231. doi: 10.1146/annurev.genom.9.081307.164407. - DOI - PubMed

Publication types

LinkOut - more resources