Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;258(5 Pt 1):G699-706.
doi: 10.1152/ajpgi.1990.258.5.G699.

ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes

Affiliations

ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes

R P Oude Elferink et al. Am J Physiol. 1990 May.

Abstract

The driving force for efflux of dinitrophenyl-glutathione (GS-DNP) and oxidized glutathione (GSSG) from freshly isolated rat hepatocytes was studied. Incubation of hepatocytes in Krebs with increasing K+ concentrations (equivalently replaced for Na+) or in Krebs with 3 mM ouabain led to a partial or complete dissipation of the plasma membrane potential, as measured by the equilibrium distribution of 36Cl-. This had no effect on the initial efflux rate of GSSG and GS-DNP. On the other hand, partial depletion of the cellular ATP content via different independent mechanisms significantly reduced the initial efflux rate of these compounds. Titration of the cellular ATP content by incubation of the cells with different concentrations of atractyloside revealed a linear relation between the cellular ATP content and the initial efflux rate of GS-DNP. The efflux of GS-DNP was also studied in hepatocytes from mutant rats with hepatobiliary transport defect (TR- rats). These rats have a hereditary canalicular secretion defect for a number of organic anions including GS-DNP. As we have shown previously, the efflux of GS-DNP from TR- rat hepatocytes is significantly slower than from normal hepatocytes (J. Clin. Invest. 84: 476-483, 1989). Depletion of the cellular ATP content in these cells had no significant effect on the residual efflux of GS-DNP. From these studies, we conclude that an ATP-dependent transport system for oxidized glutathione and glutathione conjugates is involved in the biliary transport of these compounds. The possible relation of this transport system with that described in other cell types and tissues, like erythrocytes and heart sarcolemma, is discussed.

PubMed Disclaimer

LinkOut - more resources