Equipartition Principle for Internal Coordinate Molecular Dynamics
- PMID: 23341754
- PMCID: PMC3549275
- DOI: 10.1021/ct3002046
Equipartition Principle for Internal Coordinate Molecular Dynamics
Abstract
The principle of equipartition of (kinetic) energy for all-atom Cartesian molecular dynamics states that each momentum phase space coordinate on the average has ½kT of kinetic energy in a canonical ensemble. This principle is used in molecular dynamics simulations to initialize velocities, and to calculate statistical properties such as entropy. Internal coordinate molecular dynamics (ICMD) models differ from Cartesian models in that the overall kinetic energy depends on the generalized coordinates and includes cross-terms. Due to this coupled structure, no such equipartition principle holds for ICMD models. In this paper we introduce non-canonical modal coordinates to recover some of the structural simplicity of Cartesian models and develop a new equipartition principle for ICMD models. We derive low-order recursive computational algorithms for transforming between the modal and physical coordinates. The equipartition principle in modal coordinates provides a rigorous method for initializing velocities in ICMD simulations thus replacing the ad hoc methods used until now. It also sets the basis for calculating conformational entropy using internal coordinates.
Similar articles
-
GneimoSim: a modular internal coordinates molecular dynamics simulation package.J Comput Chem. 2014 Dec 5;35(31):2245-55. doi: 10.1002/jcc.23743. Epub 2014 Sep 27. J Comput Chem. 2014. PMID: 25263538 Free PMC article.
-
Internal coordinate molecular dynamics: a foundation for multiscale dynamics.J Phys Chem B. 2015 Jan 29;119(4):1233-42. doi: 10.1021/jp509136y. Epub 2015 Jan 6. J Phys Chem B. 2015. PMID: 25517406 Free PMC article.
-
On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems.J Chem Phys. 2008 Mar 28;128(12):124301. doi: 10.1063/1.2889939. J Chem Phys. 2008. PMID: 18376913
-
Markov state models provide insights into dynamic modulation of protein function.Acc Chem Res. 2015 Feb 17;48(2):414-22. doi: 10.1021/ar5002999. Epub 2015 Jan 3. Acc Chem Res. 2015. PMID: 25625937 Free PMC article. Review.
-
Enhanced sampling algorithms.Methods Mol Biol. 2013;924:153-95. doi: 10.1007/978-1-62703-017-5_7. Methods Mol Biol. 2013. PMID: 23034749 Review.
Cited by
-
Force distribution in a semiflexible loop.Phys Rev E. 2016 Apr;93:043315. doi: 10.1103/PhysRevE.93.043315. Epub 2016 Apr 18. Phys Rev E. 2016. PMID: 27176436 Free PMC article.
-
Fixman compensating potential for general branched molecules.J Chem Phys. 2013 Dec 28;139(24):244103. doi: 10.1063/1.4851315. J Chem Phys. 2013. PMID: 24387353 Free PMC article.
-
Hamiltonian Monte Carlo with Constrained Molecular Dynamics as Gibbs Sampling.J Chem Theory Comput. 2017 Oct 10;13(10):4649-4659. doi: 10.1021/acs.jctc.7b00570. Epub 2017 Sep 27. J Chem Theory Comput. 2017. PMID: 28892630 Free PMC article.
-
A simple molecular mechanics integrator in mixed rigid body and dihedral angle space.J Chem Phys. 2014 Jul 21;141(3):034105. doi: 10.1063/1.4887339. J Chem Phys. 2014. PMID: 25053299 Free PMC article.
-
GneimoSim: a modular internal coordinates molecular dynamics simulation package.J Comput Chem. 2014 Dec 5;35(31):2245-55. doi: 10.1002/jcc.23743. Epub 2014 Sep 27. J Comput Chem. 2014. PMID: 25263538 Free PMC article.
References
-
- Tolman RC. Statistical Mechanics with Applications to Physics and Chemistry. Chemical Catalog Company; 1927.
-
- Uline MJ, Siderius DW, Corti DS. J. Chem. Phys. 2008;128:124301–124317. - PubMed
-
- Schafer H, Mark AE, Gunsteren WF. V. J. Chem. Phys. 2000;113:7809–7817.
-
- Zuckerman DM. Statistical Physics of Biomolecules: An Introduction. CRC Press; 2010. p. 356.
-
- Mazur AK, Abagyan RA. J. Biomol. Struct. Dyn. 1989;6:815–832. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources