Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e53954.
doi: 10.1371/journal.pone.0053954. Epub 2013 Jan 14.

The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov

Affiliations

The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov

Melissa R Christopherson et al. PLoS One. 2013.

Abstract

Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T). For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T). An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T) showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal’s policy and have the following conflicts: David Mead is employed by Lucigen Corp., a manufacturer of research reagents. Phillip Brumm is employed by C5–6 Technologies Corp., an enzyme discovery company. All work reported here was performed under and supported by subcontract to the GLBRC. No funds from either corporation was used for this research or to support the researchers during performance of this work. The commercial affiliations which the authors have declared do not alter their adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Phylogenetic placement of “Cellvibrio gilvus”.
Rooted Bayesian trees based on 16S rRNA gene sequences (A) and 32 concatenated house-keeping protein sequences (B) showing the relationship between “Cellvibrio gilvus” and sequenced bacterial genomes in the phylum Actinobacteria and Gammaproteobacteria and species within the Cellulomonas and Cellvibrio genera. Bar, 0.1 substitutions per amino acid position.
Figure 2
Figure 2. Ortholog analysis of the three Cellulomonas genomes conducted using OrthoMCL.
The total numbers of shared proteins between the three genomes were tabulated and presented as a Venn diagram in (A). The unique proteins from each species were analyzed using the KEGG database (B).

Similar articles

Cited by

References

    1. Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, et al. (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2: 375. - PubMed
    1. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58: 1167–1178. - PMC - PubMed
    1. Himmel M, Xu Q, Luo Y, Ding S, Lamed R, et al. (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1: 323–341.
    1. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 506–577. - PMC - PubMed
    1. Hazlewood GP, Gilbert HJ (1998) Structure and function analysis of Pseudomonas plant cell wall hydrolases. Biochem Soc Trans 26: 185–190. - PubMed

Publication types

LinkOut - more resources