Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 23:13:20.
doi: 10.1186/1471-2148-13-20.

Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

Affiliations

Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

Robert W Meredith et al. BMC Evol Biol. .

Abstract

Background: Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines.

Results: We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann's two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus.

Conclusions: Our results highlight the power of combining fossil and genomic evidence to decipher macroevolutionary transitions and characterize the functional range of different loci involved in tooth development. The fossil record and phylogenetics combine to predict the occurrence of molecular fossils of tooth-specific genes in the genomes of edentulous amniotes, and in every case these molecular fossils have been discovered. The widespread occurrence of EMP pseudogenes in turtles, birds, and edentulous/enamelless mammals also provides compelling evidence that in amniotes, the only unique, non-redundant function of these genes is in enamel formation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Timetree of edentulous and enamelless amniote taxa for which genomic sequences are available (Ensembl, PreEnsembl, NCBI) with a mapping of inferred inactivating mutations (frameshifts, premature stop codons, splice site mutations) in three EMP genes to particular branches in the tree. Branches with inactivating mutations are marked by vertical bars (pink = ENAM [E], blue = AMBN [B], green = AMEL [A]). Extinct stem taxa with teeth (Odontochelys, Ichthyornis, Eomaia) are also shown. Mutations were mapped to branches by Fitch parsimony with delayed transformation optimization. Teeth with enamel, teeth without enamel, and edentulism are denoted with black, gray, and white-filled circles, respectively, at terminal and internal nodes. In combination with fossil evidence, dN/dS ratios and frameshift mutations in ENAM suggest that enamel was lost independently in the common ancestor of Pilosa (sloths and anteaters) and in multiple armadillo lineages, including Dasypus[2]. Remnants of AMBN and ENAM were not recovered from the Pelodiscus genome. References for divergence dates and fossil ages are provided in Methods.

Similar articles

Cited by

References

    1. Deméré TA, McGowen MR, Berta A, Gatesy J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol. 2008;57:15–37. doi: 10.1080/10635150701884632. - DOI - PubMed
    1. Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS. Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet. 2009;5:e1000634. doi: 10.1371/journal.pgen.1000634. - DOI - PMC - PubMed
    1. Meredith RW, Gatesy J, Cheng J, Springer MS. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc R Soc B. 2011;278:993–1002. doi: 10.1098/rspb.2010.1280. - DOI - PMC - PubMed
    1. Scarel-Caminaga RM, Pasetto S, da Silva ER, Peres RCR. Genes and tooth development: reviewing the structure and function of some key players. Braz J Oral Sci. 2003;2:339–347.
    1. Chai Y, Maxson RE Jr. Recent advances in craniofacial morphogenesis. Dev Dynamics. 2006;235:2353–2375. doi: 10.1002/dvdy.20833. - DOI - PubMed

Publication types

Substances