Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells
- PMID: 23344746
- PMCID: PMC3659209
- DOI: 10.1007/s00424-012-1214-8
Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells
Abstract
Recent studies have demonstrated the importance of large-conductance Ca(2+)-activated K(+) (BK) channels in detrusor smooth muscle (DSM) function in vitro and in vivo. However, in-depth characterization of human native DSM single BK channels has not yet been provided. Here, we conducted single-channel recordings from excised patches from native human DSM cells. Inside-out and outside-out recordings in high K(+) symmetrical solution (containing 140 mM KCl and ~300 nM free Ca(2+)) showed single-channel conductance of 215-220 pS, half-maximum constant for activation of ~+75 to +80 mV, and low probability of opening (P o) at +20 mV that increased ~10-fold at +40 mV and ~60-fold at +60 mV. Using the inside-out configuration at +30 mV, reduction of intracellular [Ca(2+)] from ~300 nM to Ca(2+)-free decreased the P o by ~85 %, whereas elevation to ~800 nM increased P o by ~50-fold. The BK channel activator NS1619 (10 μM) enhanced the P o by ~10-fold at +30 mV; subsequent application of the selective BK channel inhibitor paxilline (500 nM) blocked the activity. Changes in intracellular [Ca(2+)] or the addition of NS1619 did not significantly alter the current amplitude or single-channel conductance. This is the first report to provide biophysical and pharmacological profiles of native human DSM single BK channels highlighting their importance in regulating human DSM excitability.
Figures
References
-
- Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev. 2004;56(4):581–631. - PubMed
-
- Brown SM, Bentcheva-Petkova LM, Liu L, Hristov KL, Chen M, Kellett WF, Meredith AL, Aldrich RW, Nelson MT, Petkov GV. Beta-adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+ channel. Am J Physiol Renal Physiol. 2008;295(4):F1149–F1157. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
