A model equations of the volume transport of multicomponent and heterogeneous non-ionic solutions in double-membrane system
- PMID: 23345669
- PMCID: PMC3455864
- DOI: 10.1023/A:1005017619003
A model equations of the volume transport of multicomponent and heterogeneous non-ionic solutions in double-membrane system
Abstract
The volume flows model equation for a double-membrane system, in which two membranes separate three compartments (l,m,r) containing the heterogeneous, non-ionic n-component solutions is elaborated. In this system the solution concentrations fulfill the condition Clk > Cmk > Crk. The inter-membrane compartment (m) consists of the infinitesimal layer of solution. The volume of compartment m and external compartments (l and r) fulfill the conditions Vm→ 0 and Vl =Vr→∞ respectively. The linear dependences of the volume flux on concentration differences in binary solutions and nonlinear - in ternary solutions, were obtained. This model for binary and ternary non-electrolyte solutions is discussed. It is shown, that the double-membrane system has rectifying and amplifying properties for osmotic transport and mechanical pressure.
Keywords: Boundary layers; Gravitation force; Kedem-Katchalsky equations; Membrane transport.
Similar articles
-
Study of the solute flows of multicomponent and heterogeneous non-ionic solutions in double-membrane system.J Biol Phys. 2000 Sep;26(3):235-54. doi: 10.1023/A:1010391725156. J Biol Phys. 2000. PMID: 23345724 Free PMC article.
-
[Streaming gravity-osmotic effect for a series of two flat polymeric membranes oriented horizontally and ternary non-ionic solutions].Polim Med. 2001;31(3-4):42-51. Polim Med. 2001. PMID: 11935939 Polish.
-
[Gravitational osmotic pressure effect for a series of flat polymer membranes positioned horizontally].Polim Med. 2001;31(3-4):25-32. Polim Med. 2001. PMID: 11935936 Polish.
-
[Streaming gravity-diffusive effect for a series of two flat polymeric membranes oriented horizontally].Polim Med. 2001;31(3-4):33-41. Polim Med. 2001. PMID: 11935938 Polish.
-
Modelling nanofiltration of electrolyte solutions.Adv Colloid Interface Sci. 2019 Jun;268:39-63. doi: 10.1016/j.cis.2019.03.004. Epub 2019 Mar 13. Adv Colloid Interface Sci. 2019. PMID: 30951927 Review.
Cited by
-
Thermodynamic model equations for heterogeneous multicomponent non-ionic solution transport in a multimembrane system.J Biol Phys. 1999 Dec;25(4):289-308. doi: 10.1023/A:1005172400390. J Biol Phys. 1999. PMID: 23345704 Free PMC article.
-
Gravitational effects in a passive transmembrane transport: the flux graviosmotic and gravidiffusive effects in non-electrolytes.J Biol Phys. 2000 Jun;26(2):149-70. doi: 10.1023/A:1005209724299. J Biol Phys. 2000. PMID: 23345718 Free PMC article.
-
Study of the solute flows of multicomponent and heterogeneous non-ionic solutions in double-membrane system.J Biol Phys. 2000 Sep;26(3):235-54. doi: 10.1023/A:1010391725156. J Biol Phys. 2000. PMID: 23345724 Free PMC article.
References
-
- Kedem O., Katchalsky A. Permeability of Composite Membranes. Part III. Series Array of Elements. Trans. Faraday Soc. 1963;59:1941–1953.
-
- Katchalsky A., Curran P. F. Nonequilibrium thermodynamics in biophysics. Cambridge MA: Harvard Univ. Press; 1965.
-
- Katchalsky A. Thermodynamic treatment of membrane transport. Pure Appl. Chem. 1968;16:229–261.
-
- Richardson I.W. Multiple Membrane Systems as Biological Models: Current-Voltage Behavior. J. Membrane Biol. 1972;8:219–236. - PubMed
-
- Naparstek O., Caplan S. R., Katzir-Katchalsky A. Series array of ion-exchange membranes: concentration profiles and rectification of electric current. Israel J. Chem. 1973;11:255–270.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous