The sleep cycle modelled as a cortical phase transition
- PMID: 23345918
- PMCID: PMC3456332
- DOI: 10.1007/s10867-005-1285-2
The sleep cycle modelled as a cortical phase transition
Abstract
We present a mean-field model of the cortex that attempts to describe the gross changes in brain electrical activity for the cycles of natural sleep. We incorporate within the model two major sleep modulatory effects: slow changes in both synaptic efficiency and in neuron resting voltage caused by the ∼90-min cycling in acetylcholine, together with even slower changes in resting voltage caused by gradual elimination during sleep of somnogens (fatigue agents) such as adenosine. We argue that the change from slow-wave sleep (SWS) to rapid-eye-movement (REM) sleep can be understood as a first-order phase transition from a low-firing, coherent state to a high-firing, desychronized cortical state. We show that the model predictions for changes in EEG power, spectral distribution, and correlation time at the SWS-to-REM transition are consistent not only with those observed in clinical recordings of a sleeping human subject, but also with the on-cortex EEG patterns recently reported by Destexhe et al. [J. Neurosci.19(11), (1999) 4595-4608] for the sleeping cat.
Keywords: EEG; Langevin equation; REM; SWS; acetylcholine; adenosine; correlation; cortical model; critical slowing down; fluctuations; phase transition; sleep cycle.
References
-
- Courant, R. and John, F.: Introduction to Calculus and Analysis, Vol. 2, Wiley-Interscience, New York, 1974.
-
- España R.A., Scammell T.E. Sleep Neurobiology for the Clinician. Sleep. 2004;27(4):811–820. - PubMed
-
- Freeman W.J. Mass Action in the Nervous System. New York: Academic Press; 1975.
-
- Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, Vol. 13: Springer Series in Synergetics, 3rd edn., Springer-Verlag, Berlin/Heidelberg/ New York, 2004.
LinkOut - more resources
Full Text Sources
Miscellaneous