Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;10(4):214-9.
doi: 10.5808/GI.2012.10.4.214. Epub 2012 Dec 31.

Application of whole exome sequencing to identify disease-causing variants in inherited human diseases

Affiliations

Application of whole exome sequencing to identify disease-causing variants in inherited human diseases

Gerald Goh et al. Genomics Inform. 2012 Dec.

Abstract

The recent advent of next-generation sequencing technologies has dramatically changed the nature of biomedical research. Human genetics is no exception-it has never been easier to interrogate human patient genomes at the nucleotide level to identify disease-associated variants. To further facilitate the efficiency of this approach, whole exome sequencing (WES) was first developed in 2009. Over the past three years, multiple groups have demonstrated the power of WES through robust disease-associated variant discoveries across a diverse spectrum of human diseases. Here, we review the application of WES to different types of inherited human diseases and discuss analytical challenges and possible solutions, with the aim of providing a practical guide for the effective use of this technology.

Keywords: discovery of disease-causing variants; inherited human disease; next-generation sequencing; whole exome sequencing.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Increasing number of whole exome sequencing papers over time.
Fig. 2
Fig. 2
Overview of whole exome sequencing pipeline. SNV, single nucleotide variant.
Fig. 3
Fig. 3
Increased sensitivity to detect causal gene as patient cohort size increases. Percentages shown denote ratio of patients that carry rare functional variants. Simulation was performed assuming that 0.1% of healthy controls carry rare functional variants, and was iterated 105 times. Each iteration was evaluated and called 'detected' if the p-value exceeded the genome-wide significance.

Similar articles

Cited by

References

    1. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–19101. - PMC - PubMed
    1. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–276. - PMC - PubMed
    1. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol. 2011;29:908–914. - PMC - PubMed
    1. Bilgüvar K, Oztürk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467:207–210. - PMC - PubMed
    1. Dixon-Salazar TJ, Silhavy JL, Udpa N, Schroth J, Bielas S, Schaffer AE, et al. Exome sequencing can improve diagnosis and alter patient management. Sci Transl Med. 2012;4:138ra178. - PMC - PubMed

LinkOut - more resources