An electrophysiological validation of stochastic DCM for fMRI
- PMID: 23346055
- PMCID: PMC3548242
- DOI: 10.3389/fncom.2012.00103
An electrophysiological validation of stochastic DCM for fMRI
Abstract
In this note, we assess the predictive validity of stochastic dynamic causal modeling (sDCM) of functional magnetic resonance imaging (fMRI) data, in terms of its ability to explain changes in the frequency spectrum of concurrently acquired electroencephalography (EEG) signal. We first revisit the heuristic model proposed in Kilner et al. (2005), which suggests that fMRI activation is associated with a frequency modulation of the EEG signal (rather than an amplitude modulation within frequency bands). We propose a quantitative derivation of the underlying idea, based upon a neural field formulation of cortical activity. In brief, dense lateral connections induce a separation of time scales, whereby fast (and high spatial frequency) modes are enslaved by slow (low spatial frequency) modes. This slaving effect is such that the frequency spectrum of fast modes (which dominate EEG signals) is controlled by the amplitude of slow modes (which dominate fMRI signals). We then use conjoint empirical EEG-fMRI data-acquired in epilepsy patients-to demonstrate the electrophysiological underpinning of neural fluctuations inferred from sDCM for fMRI.
Keywords: EEG; dynamic causal modeling; effective connectivity; fMRI; neural field; neural noise; separation of time scales.
Figures








Similar articles
-
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.Neuroimage. 2016 Jan 1;124(Pt A):498-508. doi: 10.1016/j.neuroimage.2015.08.052. Epub 2015 Aug 31. Neuroimage. 2016. PMID: 26334836
-
Construct validation of a DCM for resting state fMRI.Neuroimage. 2015 Feb 1;106:1-14. doi: 10.1016/j.neuroimage.2014.11.027. Epub 2014 Nov 21. Neuroimage. 2015. PMID: 25463471 Free PMC article.
-
Stochastic dynamic causal modelling of fMRI data: should we care about neural noise?Neuroimage. 2012 Aug 1;62(1):464-81. doi: 10.1016/j.neuroimage.2012.04.061. Epub 2012 May 9. Neuroimage. 2012. PMID: 22579726 Free PMC article.
-
Fusing concurrent EEG-fMRI with dynamic causal modeling: application to effective connectivity during face perception.Neuroimage. 2014 Nov 15;102 Pt 1:60-70. doi: 10.1016/j.neuroimage.2013.06.083. Epub 2013 Jul 9. Neuroimage. 2014. PMID: 23850464 Review.
-
On nodes and modes in resting state fMRI.Neuroimage. 2014 Oct 1;99:533-47. doi: 10.1016/j.neuroimage.2014.05.056. Epub 2014 May 24. Neuroimage. 2014. PMID: 24862075 Free PMC article. Review.
Cited by
-
Temporal prediction errors modulate task-switching performance.Front Psychol. 2015 Aug 25;6:1185. doi: 10.3389/fpsyg.2015.01185. eCollection 2015. Front Psychol. 2015. PMID: 26379568 Free PMC article.
-
Studying Brain Circuit Function with Dynamic Causal Modeling for Optogenetic fMRI.Neuron. 2017 Feb 8;93(3):522-532.e5. doi: 10.1016/j.neuron.2016.12.035. Epub 2017 Jan 26. Neuron. 2017. PMID: 28132829 Free PMC article.
-
Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.Brain. 2014 Apr;137(Pt 4):1130-44. doi: 10.1093/brain/awu027. Epub 2014 Feb 24. Brain. 2014. PMID: 24566670 Free PMC article.
-
Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography.Cortex. 2016 Sep;82:192-205. doi: 10.1016/j.cortex.2016.05.001. Epub 2016 May 10. Cortex. 2016. PMID: 27389803 Free PMC article.
-
Inhibitory behavioral control: a stochastic dynamic causal modeling study using network discovery analysis.Brain Connect. 2015 Apr;5(3):177-86. doi: 10.1089/brain.2014.0275. Epub 2014 Nov 19. Brain Connect. 2015. PMID: 25336321 Free PMC article.
References
-
- Amari S.-I. (1975). Homogeneous nets of neuron-like elements. Biol. Cybern. 17, 211–220 - PubMed
-
- Amari S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 - PubMed
-
- Bojak I., Oostendorf T. F., Reid A. T., Kotter R. (2011). Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos. Transact. A Math. Phys. Eng. Sci. 369, 3785–3801 10.1098/rsta.2011.0080 - DOI - PMC - PubMed
-
- Bressloff P. C. (2012). Spatiotemporal dynamics of continuum neural fields. J. Phys. A Math. Theor. 45:033001 10.1088/1751-8113/45/3/033001 - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources