Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May 2;1052(2):248-54.
doi: 10.1016/0167-4889(90)90218-3.

Adaptive changes in sulfoglycolipids of kidney cell lines by culture in anisosmotic media

Affiliations

Adaptive changes in sulfoglycolipids of kidney cell lines by culture in anisosmotic media

Y Niimura et al. Biochim Biophys Acta. .

Abstract

(1) The effects of osmolarity environments on renal glycolipid composition were examined using established renal cell lines. The profile of glycosphingolipids of Madin-Darby canine kidney cells (MDCK) in culture with anisosmotic media showed that a hyposomotic medium reduced the concentration of GalCer I3-sulfate and LacCer II3-sulfate. (2) The concentrations of sulfoglycolipids were increased by maintaining the culture in a hyperosmotic media prepared by the addition of various sodium salts to the control isosmotic medium, while the contents of most of the neutral glycolipids were reduced. The hyperosomotic medium supplemented with nonelectrolytes, mannitol, sucrose or urea, also increased the concentration of sulfoglycolipids. (3) Both sulfoglycolipids were increased linearly with gradual increases of sodium chloride in the medium. Hyperosmolarity produced by the addition of a nonelectrolyte, mannitol, also increased the levels of sulfoglycolipids. In both series of media, the most prominent accumulation was observed in LacCer II3-sulfate. (4) The incorporation of radioactive sulfate into sulfoglycolipids was elevated in cells adapted to high NaCl or mannitol. The increase of the label was observed not only in MDCK but also in three other established cell lines of renal tubular origin, JTC-12, LLC-PK1 and MDBK. (5) It was established, using the culture system of homogeneous cell lines, that the mechanism of increasing the amount of sulfoglycolipids is independent of the integral regulatory mechanism of animals and resides in the renal epithelial cell itself. These results suggest that by culture in hyperosmotic media, the elevated level of intracellular cations stimulated the activity of GalCer and LacCer sulfotransferase, inducing the increased expression of sulfoglycolipids.

PubMed Disclaimer

Publication types

LinkOut - more resources